
Problem 1. A diagram of a house consists of a square and an equilateral triangle of the same side length. What is
the size of the marked angle in degrees?

?

Result. 105◦

Solution. Note that the extra segment is a base of an isosceles triangle with angles 150◦, 15◦, 15◦. The sought angle is
180◦ − 60◦ − 15◦ = 105◦.

15◦

15◦

150◦

60◦ 105◦

Problem 2. Members of a sport team are posing for a photo. They stand in a row and all of them are wearing team
jerseys numbered by some distinct positive integers. The photographer notices that the one standing at the right end
of the row has number 72 and that the number of any other team member divides the number of his neighbour on the
right (the sides are given from the point of view of the photographer). How many athletes at most could be standing
there?

Result. 6

Solution. Starting at the rightmost number 72 and moving left, the next number always equals the former one divided
by a positive integer n > 1. Since 72 = 23 · 32 and with each step exponent of some prime decreases, hence we cannot
have more than 1 + 3 + 2 = 6 athletes. This is attained e.g. by the sequence 1, 2, 4, 8, 24, 72.

Problem 3. In an ensemble of string players, everyone can play the violin or the viola and exactly one quarter of all
the members can play both the instruments. Furthermore, we know that 32 people can play the violin and 23 can play
the viola. How many members are there altogether?

Result. 44

Solution. Let n be the sought number of group members. When we add the counts 23 and 32, we obtain the total
number of members, but with counting twice each member who can play both the instruments. Since there are n/4
such members, we infer that

23 + 32 = 55 = n+ n
4 = 5

4n,

hence n = 44.
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Problem 4. Cecil has multiplied five consecutive positive integers, obtaining number C. David has done the same,
but his sequence started with a number one greater than Cecil’s, leading to the product D. What was the smallest of
the numbers that David multiplied, provided that C/D = 4/5?

Result. 21

Solution. Assume that n is Cecil’s first number, then C = n(n+ 1)(n+ 2)(n+ 3)(n+ 4). David starts with n+ 1, so
D = (n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5). We have

4

5
=
C

D
=

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)
=

n

n+ 5
.

Solving this equation for n leads to n = 20. Since we seek David’s smallest number, the answer is 21.

Problem 5. To each small triangle assign the number of small triangles with which it shares an edge. Determine the
sum of all these numbers.

Result. 168

Solution. There are 18 boundary triangles with two neighbours and 3 triangles with just one neighbour. The remaining
64− 18− 3 = 43 triangles have three neighbours and hence the result is 3 · 43 + 2 · 18 + 3 = 168.

Problem 6. Find the largest positive integer n such that n2 − 5n+ 6 is a prime number.

Result. 4

Solution. Since for any integer n the number n(n − 5) is a product of odd and even numbers, we infer that
n2 − 5n+ 6 = n(n− 5) + 6 is even. Since the only even prime number is 2, we get the equation n2 − 5n+ 6 = 2, the
solutions of which are 1 and 4. The sought largest integer is therefore 4.

Another possible solution is to note directly that n2 − 5n+ 6 = (n− 2)(n− 3) can be a prime number only if one of
the brackets equals ±1. Largest such number is 4 and the quadratic expression evaluated at 4 indeed yields the prime
number 2.

Problem 7. Two circles of radii 1 are touching in the centre of a big circle which is also tangent to the two smaller
circles. Determine the length of the dashed segment, which is tangent to the smaller circles and its endpoints lie on the
big circle as in the picture.

?

Result. 2
√

3
.
= 3.46410

Solution.

1
2

2
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The dashed segment is located 1 unit above the horizontal diameter of the big circle. The centre of the big circle, one
of the endpoints of the dashed segment and the point “on the top” of the big circle thus form an isosceles triangle with
vertical base and one other side of length 2. The result is thus twice the length of an altitude in the equilateral triangle
of side length 2 and can be computed e.g. by the Pythagorean theorem.

Problem 8. Four mathematicians sat around a table and have ordered a large bowl of pretzels. Daniel left for the
toilet. Each minute, Adam, Beatha and Cyril took one pretzel, divided it into three equal pieces and ate it. After some
time, Daniel returned to the table and they all continued eating one pretzel each minute, but Daniel got to eat 2/5 of
each pretzel, while the others got to eat 1/5. After some time, Adam noted that Daniel ate exactly the same portion as
himself. What is the ratio of time in which Daniel was absent to the time he was present?

Result. 3/5

Solution. Let ta be the time for which Daniel was absent and tp the time for which he was present. Adam and Daniel
ate the same amount of pretzels, so

2

5
tp =

1

3
ta +

1

5
tp ⇒

ta
tp

=
3

5
.

Problem 9. An exchange office in Prague offers these coins: 1 Czech crown for 40 cents, 2 crowns for 50 cents, 5
crowns for 1 euro, 10 crowns for 2 euros, 20 crowns for 4.1 euros and 50 crowns for 9.9 euros. Mark wants to exchange
all of his 11.8 euros, but he does not want to buy more than one coin of each type. How much will he get (in Czech
crowns)? Find the sum of all solutions.

Result. 58

Solution. We have to solve the equation 11.8 = 0.4 · x1 + 0.5 · x2 + 1 · x3 + 2 · x4 + 4.1 · x5 + 9.9 · x6 where all xi must
be in the set {0, 1}. Since 0.4 + 0.5 + 1 + 2 + 4.1 < 11.8, we know that x6 must be 1. Therefore, the equation reads
1.9 = 0.4 · x1 + 0.5 · x2 + 1 · x3 + 2 · x4 + 4.1 · x5. Since by choosing x4 = 1 or x5 = 1 the amount spent will exceed 11.8
euros, we need to set x4 = x5 = 0. Because of 0.4 + 0.5 + 1 = 1.9, the only solution is x1 = x2 = x3 = x6 = 1 and
x5 = x4 = 0. Therefore, Mark will get 1 + 2 + 5 + 50 = 58 Czech crowns.

Problem 10. In a regular grid of unit squares these fourteen points are marked. How many rectangles are there
having four marked points as their vertices?

Result. 27

Solution. Seven types of rectangles can be found in the shown part of the grid:

There are 7 unit squares, 2 squares of size 2× 2, 4 squares like the one with dotted lines, and 2 like the one with
dashed lines. In addition, there are 8 rectangles of size 1× 2, 2 rectangles of size 1× 3, and 2 rectangles like the one
with the dashed lines.

Altogether, we count 7 + 2 + 4 + 2 + 8 + 2 + 2 = 27 rectangles.
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Problem 11. What is the value of the positive integer n for which the least common multiple of 60 and n is larger
by 777 than the greatest common divisor of 60 and n?

Result. 39

Solution. We wish to solve the equation lcm(60, n) = 777 + gcd(60, n). The greatest common divisor must be a divisor
of 60, i.e. it must be one of the numbers 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, or 60. Of those divisors, only the number 3 can
be added to 777 to obtain a multiple of 60. Thus gcd(60, n) = 3 and lcm(60, n) = 780. Then 60 · n = 3 · 780, so n = 39.

Problem 12. An ant sits in the centre of a face of a regular tetrahedron of edge length 1. By crawling on the surface
of the tetrahedron it wants to get to the centre of an edge that does not lie on the same face as the ant sits in. What is
the length of the shortest way that it needs to walk to get there?

Result.
√

7/12
.
= 0.76376

Solution.

P

BD

A

C

Let us “unwrap” the surface of the tetrahedron as shown by the figure. The ant sits at the point A and wants to
get to B. Since the net is planar, the shortest way has to be a line segment (dashed line). We get |PD| from the
Pythagorean theorem as |PD|2 = |CD|2 − |CP |2 = 12 − (1/2)2 = 3/4, i.e., |PD| =

√
3/4. Thus

|AD| = 2

3
|PD| = 2

3

√
3

4
.

Since |DB| = 1/2, we can apply the Pythagorean theorem once again and compute

|AB|2 = |AD|2 + |DB|2 =
1

3
+

1

4
=

7

12
,

which gives the answer

|AB| =
√

7

12

.
= 0.76376.

Problem 13. Agnieszka, Brunhilda, Cecilia and Doina drew numbers 3, 6, 9 and 12 without repetitions in some
order. (No number was shared by two or more women.) We know that two of them always lie and two say the truth.
They said the following:

• Agnieszka: I got twice as much as Doina.

• Brunhilda: I got three times as much as Doina.

• Cecilia: I got four times as much as Doina.

• Doina: I did not get the least.

What is the product of the numbers that the two liars got?

Result. 27

Solution. If Doina got 3, she would lie. Therefore, exactly one of the others would have to lie, which is not possible,
since two ladies would have to have drawn the same number. If Doina got 9 or 12, all others would lie, since it is
not possible to draw any multiple thereof, thus Doina got 6. The only one of the others who could tell the truth is
Agnieszka. Thus she got 12. Therefore, the two liars are Brunhilda and Cecilia, who got 3 and 9 in some order. The
product of their numbers is 27.
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Problem 14. Find the smallest positive integer that has exactly 24 positive divisors and exactly 8 of them are odd.

Result. 420

Solution. Recall that for any positive integer n with factorization n = p1
a1 · · · pkak such that the pi are distinct primes,

the number of all positive divisors of n is equal to (a1 + 1) · · · (ak + 1).
Obviously, the number of odd divisors can be found by just omitting all factors 2 in the prime decomposition of n.

Because 24 = 8 · 3 and with the fact that the number of odd divisors has to be 8, we get that the power of 2 must
be 2. Since 2 · 2 · 2 = 4 · 2 = 8, we have to consider either first powers of the three smallest prime numbers or the third
power of the smallest one and the first power of the second smallest one or the 7-th power of the smallest one. But
3 · 5 · 7 < 33 · 5 < 37, so the smallest number n is equal to 22 · 3 · 5 · 7 = 420.

Problem 15. A circle and a square have the same centre. If the grey regions have the same area, what is the ratio of
the side of the square to the radius of the circle?

Result.
√
π
.
= 1.77246

Solution. Since the grey regions have the same area, the circle and the square have the same area, because this area
equals the area of the overlap plus the quadruple of the area of a single grey region. If a denotes the side length of the
square and r the radius of the circle, we get a2 = r2π and therefore a : r =

√
π.

Problem 16. Lenka wrote the sequence 1, 2, 3, . . . , 20 and a plus or minus sign between each pair of consecutive
numbers in such a way that the resulting sum equalled 192. In how many ways could she have done that?

Result. 5

Solution. Note that one will be positive, since minuses were put only in between the numbers.
If all the signs are plus, the result is 210. She got 18 less, so she had to place a minus sign in front of numbers with

combined sum 9. These are one triplet (the smallest one) (2, 3, 4), three pairs (2, 7), (3, 6), (4, 5) and the single number
9. Thus we are left with five possibilities.

Problem 17. Three squares have been put into an isosceles right triangle as in the picture:

What fraction of the area of the triangle is taken by the cyan square?

Result. 1/81

Solution. The key observation is that the length of the side of the yellow square is one third of the base of the triangle;
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this can be easily seen by extending the “outer” triangles to squares.

From this we conclude that the area ratio of the yellow square to the triangle is

2 ·

(√
2

3

)2

=
4

9
.

Using the observation again, the side length of the cyan square is one sixth of that of the yellow square, hence their
area ratio is 1/36. We get the desired ratio by multiplying these two, obtaining 1/81.

Problem 18. Find the sum of all positive integers which cannot be written as 2a+ 3b for some coprime positive
integers a and b.

Recall that positive integers m and n are coprime if gcd(m,n) = 1.

Result. 26

Solution. We can easily see that we cannot get any of 1, 2, 3, 4, 6, 10, since we have a, b ≥ 1 and gcd(a, b) = 1. On the
other hand take the coprime couples (a, b) of the form (a, 1) to write all odd numbers n ≥ 5, take (2k − 3, 2) to express
all n = 4k ≥ 8, and (2k − 5, 4) for numbers n = 4k + 2 ≥ 14. Therefore the desired sum is 1 + 2 + 3 + 4 + 6 + 10 = 26.

Problem 19. A polynomial is called heavy if it has two integer roots differing by one, all of its coefficients are
integers and their sum equals 2020. How many heavy quadratic polynomials, i.e. expressions of the form ax2 + bx+ c,
are there?

Result. 4

Solution. Since the polynomial has two roots, it can be represented as c(x − a)(x − b), where a, b are the integer
roots and c is the leading coefficient, thus being integer as well. The sum of the coefficients is easily computed as
c(a− 1)(b− 1). Since this equals 2020 = 2 · 2 · 5 · 101, and since (a− 1) and (b− 1) differ by one, we are left with four
possibilities, namely 2020 = 1010 · 1 · 2, 2020 = 1010 · (−1) · (−2), 2020 = 101 · 4 · 5, and 2020 = 101 · (−4) · (−5).

Problem 20. A train consisted of 40 carriages numbered from 1 to 40, each having the capacity of 40 passengers. At
the beginning, there was one passenger sitting in carriage 1, two passengers in carriage 2 etc., up to forty passengers in
carriage 40. However, for technical reasons, the last carriage had to be removed from the train and all its passengers
moved to the carriages with smaller number in such a way that they took the first available seat and if the carriage
was already full, they proceeded to check the next one with a smaller number. During the journey, the same thing
happened subsequently to carriages 39, 38, . . . , 23. How many passengers were in carriage 2 after this had happened?

Result. 19

Solution. Note that there are altogether 40 · 41/2 = 820 passengers on the train. When the train consists of 22
carriages, its last 20 carriages have to be full, for otherwise there would have been only at most 1 + 2 + 39 + 19 · 40 = 802
passengers. This leaves 20 passengers to sit in the first two carriages and since the carriage 2 cannot be full, carriage 1
holds still only 1 passenger. It follows that there are 19 passengers in carriage 2.

Problem 21. Jacek cannot buy envelopes, so he is planning to make them by himself. To make a rectangular
envelope Jacek is taking a square sheet of paper with diagonal 30 cm, folds the left and the right corner, then folds the
bottom corner and closes the envelope by folding the top corner. In order to glue the envelope correctly, there needs to
be precisely 1 cm overlap, as in the picture, and after closing the envelope the top corner cannot be below the bottom
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edge of the envelope. What is the maximal possible width of the envelope?

1

1

1

1 1

1

1

1

Result. 18

Solution. Let the side lengths of the envelope be a (the width) and b (the height), and the diagonal of the square be
equal to d. Looking at the triangles formed by the vertical folding lines (they are right angled and isosceles, so the
length of the horizontal altitude equals half of the vertical hypotenuse), we observe that d = b+ a+ 2. In order to fold
properly, the inequality d−b

2 ≤ b, i.e. b ≥ d
3 must hold. Together it gives a ≤ d− d

3 − 2 = 2
3d− 2 = 18.

Problem 22. Martha picked three positive integers a, b, c and computed the three sums of pairs a+ b, b+ c, c+ a,
obtaining three distinct squares of integers. What was the smallest possible value of a+ b+ c?

Result. 55

Solution. Let a+ b = d2, b+ c = e2, c+ a = f2 for (necessarily distinct) positive integers d, e, f . WLOG d < e < f
and since Martha’s numbers are positive,

d2 + e2 = a+ c+ 2b > a+ c = f2. (♥)

Moreover, the sought value equals (d2 + e2 + f2)/2. Hence we are looking for a triple of squares satisfying (♥) and
having its sum even and minimal at the same time. Such a triple is (d2, e2, f2) = (25, 36, 49) and the answer is 55.

Problem 23. In the following diagram, how many paths are there from point A to point B that use each arrow at
most once? (One such path is drawn in violet.)

A B

Result. 162 = 2 · 34

Solution. The path is completely determined by the following choices: First go either up or down (2 options) and
then for each of the 4 vertical pairs of nodes: either do not use any vertical arrow, or use one of them, or use both (3
options each). Hence the answer is 2 · 34 = 2 · 81 = 162.

Problem 24. How many four-digit numbers are there with the property that any two neighbouring digits differ
exactly by 3? A number may not start with zero.

Result. 29

Solution. We code the numbers in the following way: we write U if the right digit is bigger than the left one and D if
the right digit is smaller than the left one, e.g. 1474 is encoded as UUD and 1414 UDU. There are eight possible codes
in total and for each of them the corresponding number is determined by the first digit:

code UUU UUD UDU UDD DUU DUD DDU DDD
possible first digits none 1–3 1–6 3–6 3–6 3–9 6–9 9

In total, there are 3 + 6 + 4 + 4 + 7 + 4 + 1 = 29 sought numbers.
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Problem 25. Each of two circles of equal size touches the other circle and also two sides of a unit square as in the
picture. Compute the side length of the dashed square, which shares one corner with the unit square and touches the
circles.

x

1

Result. 1
1+
√
2

=
√

2− 1
.
= 0.41421

Solution. Let x be the side length of the small square. The radii r of the circles are 1−x
2 . The diagonal of the unit

square is divided by the centres of the circles and their point of tangency into four segments. Two of them are the radii
and two of them are diagonals in squares of sides r. Altogether, we have

√
2 = 2r + 2

√
2r = (1− x)(1 +

√
2)

and solving this equation gives x = 1−
√
2

1+
√
2

= 1
1+
√
2

=
√

2− 1.

Problem 26. Real numbers x1, x2, . . . , x2020 have these properties:

• Whenever we sum all of the numbers except a single xi with i odd, the result is 2.

• Whenever we sum all of the numbers except a single xi with i even, the result is 0.

What is the value of the sum x1 + x2 + · · ·+ x2020?

Result. 2020/2019

Solution. If we sum all the given equations, we obtain

2019(x1 + x2 + · · ·+ x2020) = 1010 · 2 + 1010 · 0 = 2020,

so the sought result is 2020/2019.

Problem 27. Two players are playing a game, alternating moves. Each move consists of changing a positive integer
n into another positive integer in the range [n3 ,

n
2 ]. A player who cannot move loses. For how many starting numbers in

the range [1, 1000] is the first player able to win with optimal strategy?

Result. 620

Solution. Let us call winning the numbers for which there exists a strategy guaranteeing victory, and the rest of the
numbers losing. Observe that a number n is winning if and only if there is a losing number in the interval [n3 ,

n
2 ]; on

the other hand, a number n is losing if and only if every number from the interval [n3 ,
n
2 ] is winning (which includes the

option that there is actually no integer in that interval).
Clearly, 1 is a losing number, so according to the rules above, 2 and 3 are winning. This in turn implies that the

numbers 4, . . . , 7 are losing, since for each of these numbers we have [n3 ,
n
2 ] ∩N ⊆ {2, 3}. Next we get that 8, . . . , 21 are

winning etc. Continuing in the fashion, we obtain additional winning numbers 44, . . . , 129, 260, . . . , 777. Altogether
there are 620 winning numbers.

Problem 28. Two circles with diameters AB = 17 and AC = 7 meet in points A and D. We further know that
CD = 4. Consider all possible distances of the centres of the circles and compute their product.

Result. 60

Solution. Thales theorem yields two right angles at the point D so the points B, C and D lie on one line. From the
Pythagorean theorem we compute BD2 = 172 − (72 − 42) = 162 and thus BC = 16± 4 (indeed, the right angles can be
either identical or form a straight line). Connecting the centres of the circles we obtain a similar (with ratio 1

2 ) triangle
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with ABC and thus the desired distance equals either 20/2 = 10 or 12/2 = 6 and the desired product is 60.

A

D

B

C1
4

17

7

C2

7

4

Problem 29. Seven trolleybuses run between fourteen stations on one line. Each trolleybus starts in one of the
stations and moves in one direction until it reaches the end of the line, which is either the first or the last station on
the line, where it turns around and continues in the other direction. All trolleybuses maintain constant speed and they
pass exactly one station in a minute. MSc Birne has placed them in such a way, that

1. there is at most one trolleybus at each station, and

2. there will be at most one trolleybus at each station in one minute, no matter in what directions the trolleybuses
go.

In how many ways could that have been done? The trolleybuses are considered identical.

Result. 20

Solution. The trolleybuses must not be in a distance of two stations. Obviously odd and even stations are independent
and also obviously, both can accommodate at most 4 trolleybuses. Thus one has to accommodate 3 and the other 4,
so the solution is 2 ·N , where N is the number of ways in which 3 stones could be placed at seven places in a row
such that they are separated by a free spaces. We first place the four free spaces in a line and then we place the three
stones in between the free spaces. The first stone has 5 possibilities, the second 4 and the third 3, since the stones are
indistinguishable the result reads N = (5 · 4 · 3)/(3 · 2 · 1) = 10. The final answer is therefore 2 · 10 = 20

Problem 30. Marian has written a book with 2020 pages labelled 1, 2, 3, . . . 2020. After revision, he added an
abstract consisting of 11 pages in front of the book. How many digits does he have to rewrite so that every page gets
its proper label? A digit from an old page number can only be used in the new one on the same position (ones, tens,
hundreds, etc.) and newly written digits, such as the leading 1 appearing in the change 95→ 106, are not counted.

Result. 4251

Solution. First, let us calculate how many digits will remain the same. It is easy to see that for every one or two digit
number the operation +11 will not leave any digit intact. So every digit that will be intact has to be on position of
hundreds or thousands. If the last two digits of a page are labelled from 00 to 88, the first two digits will be intact.
This is the case for the hundreds digit for 89 numbers in each range of hundred. In addition, for every number from
1000 to 1988 we have one more stable digit—the thousand digit. So, considering all numbers up to 1999, we have
19 · 89 + 989 = 2680 digits that remain the same. From 2000 to 2020, there are 21 numbers that will not change their
hundred or thousand digit which gives 2 · 21 = 42 stable digits. Hence 2680 + 42 = 2722 digits remain the same.

Now, how many digits are there in total? From 1 to 9 there are 9 digits. From 10 to 99 there are 90 · 2 digits. From
100 to 999 there are 900 · 3 digits and from 1000 to 2020 there are 1021 · 4 digits. So there are 6973 digits overall.
Therefore, 6973− 2722 = 4251 digits have to be changed.
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Problem 31. A puck is dropped into the top of the plinko box and slides downward until it falls out the bottom.
How many different paths through the box are possible? One example path is shown.

Result. 65

Solution. We label each intersection point with the number of paths the puck can take from that point on. We start
from the bottom of the box where there is only 1 path, and work our way up. Each number is the sum of the number
or numbers immediately below it.

1

11

111

1121

12331

123341

12675

381312

112112

3233

65

Problem 32. The king and his 100 knights sit down at the round table. The vegetarians are served cheese and
everyone else is served chicken. But the king has a smaller portion of chicken than the knight to his left, so he orders
everyone to pass their plate to the right. Now the king has a reasonable portion of chicken, but 64 knights have the
wrong meal, so everyone passes their plate to the right again. Once more the king has a smaller portion of chicken
than the knight to his left, so everyone passes their plate to the right a third time. Now only 2 knights (and not the
king) have the wrong meal, so they trade places and the feast begins. How many of the king’s knights ate chicken?

Result. 68

Solution. Notice that the king and the three knights to his left were all served chicken. So after the third pass, the
first vegetarian meal to the king’s left was passed to a meat-eater, and the first vegetarian to the king’s right received
meat. These are the two knights who had to trade places.

V M M M M · · · M V

Everyone else was served the same dish as the person 3 places to their left, so the seating arrangement was

· · · M
M V M M V M M M M · · · M V M M V M M

V
· · ·

Then every vegetarian and every meat-eater to the right of a vegetarian had the wrong meal after the first pass. So
there are 64/2 = 32 vegetarians. The remaining 100− 32 = 68 knights (as well as the king) ate chicken.
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Problem 33. David would love to draw a triangle ABC and points D, E in the interiors of sides AB and BC
respectively in such a way, that triangles ABC, AEC, ADE, BDE were similar. What is the sum of all possible values
of the size of angle BAC in degrees?

Result. 150

Solution. Let us denote the inner angles of triangle ABC by α, β and γ, respectively, and note that the other three
triangles have to have the same inner angles. Obviously |^EAC| = β and |^AEC| = α.

Since the sizes of angles EDA and EDB add up to 180◦, which is also the sum of α, β and γ, they have to be the
same, that is, they are both right. Moreover, they cannot equal β as that would mean that triangle BDE would have
two right inner angles, so they are equal either to α or to γ. Straightforward angle chasing gives a unique solution
to both possibilities, see figure below. The first one trivially means α = 90◦, while the other implies 3α = 180◦, i.e.
α = 60◦. The sum of all possibilities thus equals 90◦ + 60◦ = 150◦.

A B

C

D

E

αα

α

β
β

β

γ

γ

γ

E

C

A BD

α
α α

β
β
β

γ

γ γ

Problem 34. Five night workers have to schedule their shifts for the following 10 nights so that every night exactly
two workers have a shift and those two workers cannot have the shift night after. How many time schedules containing
each possible pair of the workers exist?

Result. 240

Solution. Let us draw the workers as nodes in a diagram, where a segment between two nodes represent the shift of
the two workers. We are looking for the number of ways to draw all the 5 · 4/2 = 10 segments so that no two subsequent
segments have a common node. The first segment can be chosen in 10 ways, the second in 3 ways and in the next two
steps we always have two choices. However, no matter what choices we do, we get essentially the same situation, i.e. we
can get any sequence of choices from any other by renumbering the nodes. The fifth choice may lead to two different
outcomes: Either we obtain a cycle of five segments, or a cycle of four segments with a “tail”. The former option leads
to 1, 2, 1, 1, and 1 choices in the following steps, whereas the latter option cannot be completed in a valid way, since
the final two segments would have to contain the “end of the tail”. We conclude that there are

10 · 3 · 2 · 2 · 2 = 240

possible time schedules.

Problem 35. Lucy has got a triangle with side lengths 32, 50, and x. Furthermore, there is a triangle similar to and
having two sides of the same length as Lucy’s, but it is not congruent to it. Find the sum of all possible values of x.

Result. 27721/200

Solution. Let a < b < c be the side lengths of Lucy’s triangle. The situation described in the statement can happen
only when lengths satisfy a : b = b : c. Now there are three options: (1) a = 32, b = 50, which leads to x = c = 50 · 5032 ;

(2) a = 32, c = 50, which leads to x = b =
√

32 · 50 = 40; (3) b = 32, c = 50, leading to x = a = 32 · 3250 . It is easy to
check that none of these situations violate the triangle inequality. The result is the sum of the three values.

Problem 36. A runner is training on a track shaped as the perimeter of a regular 40-gon. His training plan is as
follows: first, he runs from the initial vertex to the clockwise-adjacent one and has a short break there. He continues in
this manner until he has a break at the initial vertex. Then he starts again, this time having a break after passing
every other edge and again continues until a break at the initial vertex where he further increases the length of one
sprint by one, etc. How many times will the runner rest before completing a whole loop without a break around the
40-gon? There is no break at the beginning nor after this last run.

Result. 902

Solution. Let us observe that the runner does exactly 40
GCD(40,a) steps (runs) of size a edges where GCD(x, y) stands

for the greatest common divisor of positive integers x, y. For all possible numbers d = GCD(40, a) (divisors of 40) we
list the possible values of a:

• d = 1 for a ∈ {1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39},

• d = 2 for a ∈ {2, 6, 14, 18, 26, 34, 38},
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• d = 4 for a ∈ {4, 12, 28, 36},

• d = 5 for a ∈ {5, 15, 25, 35},

• d = 8 for a ∈ {8, 16, 24, 32},

• d = 10 for a ∈ {10, 30},

• d = 20 for a ∈ {20},

• d = 40 for a ∈ {40}.

The total number of steps can now be obtained by summing the products of 40
d and the size of the set on the respective

row1 above. We obtain 40 · 16 + 20 · 8 + 10 · 4 + 8 · 4 + 5 · 4 + 4 · 2 + 2 · 1 + 1 · 1 = 903. It means that the runner rested
902 times.

Problem 37. A doctoral student living on a cubic planet needs to spend a travelling budget by visiting universities
which are located at the vertices of the cube. The budget covers 2020 trips and must be used completely. The student
starts at his home university and realises the first trip by moving to one of the neighbouring (by an edge of the cube)
universities. He always chooses the next university to visit randomly with the only condition that he cannot return
home sooner than by the 2020-th trip. What is the probability that he comes back home by the 2020-th trip?

Result. 2/9

Solution. Let us denote the initial vertex (i.e. the home university) by A, its neighbours by B1, B2 and B3, their
neighbours (different from A) by C1, C2 and C3 and finally the last vertex by D. It is easy to see that after an odd
number of steps (i.e. trips) the only possible positions are Bi or D and after an even number only Ci or A (which is
not allowed before the 2020-th step) are possible. Let us denote Pn(V ) the probability of reaching vertex V after the
n-th step. Due to symmetry, we have Pn(B1) = Pn(B2) = Pn(B3) =: Pn(B) for every n and analogously for vertices
Ci. The only non-zero probabilities in the first steps are easy to compute by the given rules:

• P0(A) = 1

• P1(B) = 1
3

• P2(C) = 1
3

• P3(D) = 1
3 , P3(B) = 2

9

• P4(C) = 1
3 .

Observing that after 4 steps the situation is identical to the one after 2 steps, we infer that the process is periodic and
P2019(B) = 2

9 , hence (now returning to A is again possible)

P2020(A) = 3 · 1

3
· 2

9
=

2

9
.

Problem 38. Let us define x ? n = (2− x)n + x3 − 6x2 + 12x− 5 for any real number x and a positive integer n.
Determine the sum of all real numbers a solving equation

(. . . (a ? 2020) ? 2019) ? · · · ? 2) ? 1 = a.

Result. 27

Solution. Noticing that x ? 3 = 3 for any real x we easily compute that a = (3 ? 2) ? 1 = 5 ? 1 = 27 is the only solution.

1these sizes can be expressed using Euler’s totient function as ϕ(40/d).
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Problem 39. Four friends decided to enrol in some of the four different available courses. They decided that each of
them enrols in at least one course and that there will be exactly one course in which more than one of them enrol. In
how many ways can they do that?

Result. 2052

Solution. Let us label the courses 1, 2, 3 and 4 while the friends A, B, C and D. Let us assume that course 1 is the
one which is selected by more than one of them (after calculating the result with this assumption, it will only need to
be multiplied by 4). Therefore we have only five ways of assigning course 2 (now it can be chosen by A, B, C and D or
nobody). Similarly, we have five ways of assigning courses 3 and 4. On summary, there are 53 = 125 ways of assigning
these three courses. In one of these possibilities, no friends got no courses; in 4 · 3 · 2 = 24 possibilities, three of the
friends got one course each.

Now, we have to calculate how many possibilities are there for exactly one student to get some courses. There
are 4× 3 possibilities where one of them got exactly one course and the remaining two courses were null (chosen by
nobody); 4× 3 possibilities where one of them chose exactly two courses and one course was null; and 4 possibilities
where one of them got all three considered courses. In total, this gives 4 · 3 + 4 · 3 + 4 = 28 possibilities. It also means
that there are 125− 1− 24− 28 = 72 possibilities for exactly two students to get some courses.

Having discovered that, we can get back to assigning course 1, the last of them, which is also the only multiple
one. We know that every student without previous choices has to get this one, while every student with previous
choices can get it or not, provided that there are at least two students with this course. It means that there is exactly
1 way of assigning course 1 if no students have previous courses; exactly 2 ways if one student has previous courses;
exactly 4 ways if two students have previous courses; exactly 7 ways if three students have previous courses (seven
because at least one of these three students has to choose course 1 nevertheless). This renders the final calculation:
4(1 · 1 + 28 · 2 + 72 · 4 + 24 · 7) = 2052.

Problem 40. Consider the sum of all numbers having exactly 10001000 digits, all of them being only 1, 2, or 4. What
are the last three digits of this sum?

Result. 259

Solution. Let n be a number consisting only of digits 1, 2, and 4. If we replace all its digits 1 by 2, all 2 by 4, and all
4 by 1, we obtain another number having only these digits, and applying this operation two more times produces the
original number n. Let us group all the summed numbers into triples, in which the numbers can be obtained from each
other using this cyclic substitution.The sum of every such triplet is equal to the number B consisting of 10001000 digits
7, because each digit is the sum of 1, 2, and 4 in some order. The total number of summed numbers is 31000

1000

, hence
the number of triplets is 31000

1000−1 and the sum in question is thus equal to

31000
1000−1B.

Since we are interested only in last three digits, let us compute remainders modulo 1000. Clearly, B ≡ 777 (mod 1000).
Furthermore, as 3 and 1000 are coprime we may use Euler’s Theorem to handle the large power of 3: We have
ϕ(1000) = 400, which is clearly a divisor of 10001000, hence

31000
1000−1 ≡ 3−1 (mod 1000),

where the negative exponent stands for modular inverse. Since

3 · 333 = 999 ≡ −1 (mod 1000),

we conclude that the modular inverse of 3 is −333 ≡ 667 (mod 1000). Therefore, our sought number is

667 · 777 mod 1000 = 259.

Problem 41. In the triangle ABC, the angle at vertex A is twice as big as the angle at vertex B. All sides are
integer valued and the length of the side BC is as small as possible. What is the product of the side lengths of the
triangle?

Result. 120

Solution. Denoting the lengths of sides a, b and c in a usual way and β the angle by B. Form the sine law we get

a

sin 2β
=

b

sinβ
,

a

b
=

sin 2β

sinβ
=

2 sinβ cosβ

sinβ
= 2 cosβ,
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which gives the value of cosβ = a
2b . Again from the sine law, trigonometric equalities and calculated value of cosβ we

get now
c

sin(180◦ − 3β)
=

c

sin 3β
=

b

sinβ
,

c

b
=

sin 3β

sinβ
=

sin 2β cosβ

sinβ
+

sinβ cos 2β

sinβ
=

a2

2b2
+ cos2 β − sin2 β ± 1 =

a2

2b2
+ 2 cos2 β − 1 =

a2

b2
− 1,

cb = a2 − b2.

The smallest a for which there exist b and c satisfying this equation and being the side lengths of a triangle is a = 6,
with b = 4 and c = 5. Thus, the product of the side lengths is 120.

Problem 42. There is a round table with 30 seats. In how many ways can we choose some (at least one) of the seats
in such a way that no two neighbouring seats are chosen? Choices which differ by rotation are considered distinct.

Result. 1860497

Solution. Let A(n) be the number of such choices for a table with n seats; for convenience, we will also include the
choice of zero seats in this number. We will prove the recurrence relation

A(n) = A(n− 1) +A(n− 2), (R)

for n ≥ 5. Let us call a subset M of {1, . . . , n} cyclically sparse if it contains no consecutive numbers and does not
contain 1 and n at the same time. Clearly, A(n) is equal to the number of cyclically sparse subsets of {1, . . . , n}.

Let B(n) be the number of sparse subsets of {1, . . . , n}, i.e. those not containing consecutive numbers (there is no
condition on 1 and n). Then B(n) satisfies the relation B(n) = B(n− 1) +B(n− 2) — indeed there are B(n− 1) such
subsets not containing n and B(n− 2) such subsets containing n.

Let us perform a similar analysis on A(n): The number of cyclically sparse subsets containing n is equal to B(n− 3),
because such a subset does not contain 1 and n−1, while the rest of the elements form any sparse subset of {2, . . . , n−2}.
Further, if a cyclically sparse subset does not contain n, then the remaining elements may form any sparse subset of
{1, . . . , n− 1}. Therefore

A(n) = B(n− 1) +B(n− 3),

a relation which holds for any integer n ≥ 3. Since the (shifted) sequences B(n− 1) and B(n− 3) satisfy the desired
relation, so does their sum A(n), hence we have proved (R) for n ≥ 5.

It is easy to see that A(3) = 4 and A(4) = 7. Using (R), we can now compute all further values, in particular
A(30) = 1860498. Since the statement excludes the possibility of no seat chosen, the result is one less.

Problem 43. Martin attended an online workshop on wire bending and got a homework to manufacture the
construction from the picture. He remembered the two marked pairs of equally large angles and lengths of three line
segments. Unfortunately, he forgot the fourth one (marked by “?”) and thus is now struggling with the homework.
Help him and determine the missing length.

4

10

5

?

Result. 5
√

7
2

.
= 9.354134
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Solution.

10

4

5

x

2x
5

A

B
C

D

E

F

7

Let us draw a line parallel to DF through point A as in the figure and denote its intersection with the line CD by
E. Denoting x the desired length CD, we conclude from similar triangles CDF ∼ CEA that ED = 4

10x = 2x
5 and

EA = 10+4
10 · 5 = 7. Since ∠AEC = ∠FDC = ∠DBC, the quadrilateral AEBC is cyclic. It follows in turn that

∠EAB = ∠ECB = ∠ACD. Hence EDA ∼ EAC and thus

2x
5

7
=

7
2x
5 + x

⇒ x =

√
7 · 5 · 5

2
= 5

√
7

2
.

Problem 44. Consider functions f : N→ N satisfying the condition

f(m+ n) ≥ f(m) + f(f(n))− 1

for all m,n ∈ N. Find the arithmetic mean of all possible values of f(2020).

Result. 1011

Solution. We claim that f(n) ≤ n+ 1 for all n ∈ N. Since f(n+ 1) ≥ f(n) + f(f(1))− 1 ≥ f(n) for any n ∈ N, f is
non-decreasing. Assume that

f(m) > m+ 1 for some m ∈ N, (1)

in other words f(m) = m+ c for some c ∈ N, c ≥ 2. Then

f(2m) ≥ f(m) + f(f(m))− 1 = m+ c− 1 + f(m+ c) ≥ 2m+ 2(c− 1) + 1

and by applying this argument inductively we get f(2rm) ≥ 2rm+ 2r(c− 1) + 1. Combining this inequality, the one
from statement and the fact that f is non-decreasing, we obtain

f(2rm+ 1) ≥ f(f(2rm)) ≥ f(2rm+ 2r(c− 1) + 1),

so again by the monotonicity f(2rm+ 1) = f(2rm+ 2) = · · · = f(2rm+ 2r(c− 1) + 1). For all k ∈ N choose rk ∈ N
such that 2rk(c− 1) > k. Then

f(2rkm+ 1 + k) ≥ f(2rkm+ 1) + f(f(k))− 1 ≥ f(2rkm+ 1 + k) + f(f(k))− 1

and hence f(f(k)) ≤ 1 meaning f(f(k)) = 1 for all k ∈ N. Hence also 1 = f(f(m)) = f(m + c) ≥ f(m) and hence
f(m) = 1 contradicting the assumption (1). Hence indeed f(n) ≤ n+ 1 for all n ∈ N.

In fact, for a given positive integer N > 1, the value f(N) can be any element of the set {1, 2, . . . , N + 1}. To
see this, let first A < N . Define f1(n) = 1 if n ≤ A and f1(n) = A if n > A. The function f1 satisfies the condition
and f1(N) = A. Secondly, the function f2(n) = n also satisfies the condition and f2(N) = N . Lastly, the function
f3(n) = N

⌊
n
N

⌋
+ 1 gives f3(N) = N + 1 and it also satisfies the condition. Indeed, we have

f3(m) + f3(f3(n)) = N

(⌊m
N

⌋
+

⌊⌊ n
N

⌋
+

1

N

⌋)
+ 2 ≤ N

(⌊m
N

⌋
+
⌊ n
N

⌋)
+ 2 ≤ N

⌊
m+ n

N

⌋
+ 2 = f3(m+ n) + 1

where we used that
⌊
n
N

⌋
+ 1

N <
⌊
n
N

⌋
+ 1 for N > 1 and that bxc+ byc ≤ bx+ yc for any real numbers x, y ∈ (0,∞).

Since 2020 > 1, the result is simply the average of all the positive integers from 1 to 2021, i.e. 2022
2 = 1011.
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Problem 45. Farmer Karl possesses a quadrangular piece of land with the side lengths a = 40, b = 20, c = 28, d = 32
as in the picture. By heritage he receives the two triangular pieces of land BEC and DCF , which are delimited by the
original sides of his land and their extensions, respectively. If he needs a fence of length 80 for the section BE + EC,
how long is the fence for the section CF + FD?

A B

C

D

F

E

a = 40

b = 20

c = 28

d = 32

Result. 88

Solution. First of all, we show that the triangles 4BEC, 4AED, 4DCF and 4ABF have an identical excircle lying
in the angle EAF .

A B

C

D

E

F

G

H

N

O

Let G denote the tangent point of the B-excircle of triangle 4BEC lying on AB. The distance between B and G is
half the perimeter of the triangle, i.e. BG = 1

2 (CB +BE + EC). Now let G′ be the tangent point of the A-excircle of
triangle 4AED lying on AB. Using a+ b = 60 = c+ d we get

AG′ =
1

2
(AE + ED +DA)

=
1

2
(AB +BE + EC + CD +DA)

=
1

2
(AB +BE + EC +AB +BC)

= AB +
1

2
(BE + EC +BC),

and hence G = G′. Therefore, the tangent point O on side CE is uniquely determined for both triangles and it follows
that the triangles 4BEC and 4AED have an identical excircle. By analogy, we can show that the triangles 4DCF
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and 4ABF have also the same excircle. It is even identical for all four triangles under consideration since the center
point of the excircle has to lie on the angular bisector of ∠EAF and on the angular bisector of ∠ECF . Since the
tangents to a circle have equal lengths, from AG = AH we get that the triangles 4AED and 4ABF have perimeters
of equal lengths. Hence we obtain

CF + FD = AB +BF + FA−AB −BC −DA
= AE + ED +DA−AB −BC −DA
= BE + EC + CD −BC
= 80 + 28− 20 = 88

as the length of CF + FD.

Problem 46. Determine for how many k ∈ {1, . . . , 2020} the equation p3 + q3 + r3 = 3pqr+ k has a solution (p, q, r)
for some positive integers p, q, r.

Result. 1568

Solution. Let us write the equation in the form

p3 + q3 + r3 − 3pqr =
1

2
(p+ q + r)

(
(p− q)2 + (q − r)2 + (r − p)2

)
= k.

Note that if the last bracket is nonzero, then it equals at least two and the numbers p, q, r cannot be all equal. Hence
k ≥ (1 + 1 + 2) · 12 · 2 ≥ 4. The triple (p, q, r) = (n, n, n+ 1) is a solution for k = 3n+ 1 for any n ≥ 1. Similarly, the
triple (p, q, r) = (n, n+ 1, n+ 1) is a solution for k = 3n+ 2 for any n ≥ 1. If 3 | k then by rewriting the equation as

k = p3 + q3 + r3 − 3pqr = (p+ q + r)3 − 3(p+ q + r)(pq + qr + rp)

we see that also 3 | p+ q + r and thus necessarily 9 | k. On the other hand, the triple (p, q, r) = (n− 1, n, n+ 1) solves
the equation with k = 9n for any n ≥ 2. It only remains to investigate the case k = 9 If the positive integers p, q, r
are pairwise different, we have k = 1

2 (p+ q + r)
(
(p− q)2 + (q − r)2 + (r − p)2

)
≥ (1 + 2 + 3) 1

2 (1 + 1 + 4) = 18 and
if p = q 6= r we have 9 = (2p + r)(p − r)2 and since 2p + r > 1 we must have 2p + r = 9 and |p − r| = 1 which is
impossible as then r = p± 1 and 9 6= 3p± 1. In conclusion, all the admissible k ∈ {1, . . . , 2020} can be obtained by
removing from the set the numbers smaller than 4 and multiples of 3 and then adding the multiples of 9 larger than 9.
Hence the result is 2020− 3− 672 + 223 = 1568.
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