
Problem 1. When asked about her age, grandmother Mary gives the answer in a puzzle: I have five children and
they are of different age, each 4 years apart. I had my first child when I was 21 years old, and now my youngest child
is 21. Find the age of grandma.

Result. 58

Solution. Clearly, the ages of the children are 21, 21 + 4, . . ., 21 + 4 · 4. Grandma is 21 years older than her oldest
offspring, namely she is 21 + 4 · 4 + 21 = 58 years old.

Problem 2. An old windmill propeller consisting of five triangular blades is formed by five solid line segments of
equal length, whose midpoints all lie at point S and whose endpoints are connected as in the picture. Determine the
size of the angle denoted by the question mark in degrees.

72◦

85◦
67◦

80◦

?

S

Result. 56

Solution. The ten angles adjacent to point S form five pairs of opposite angles of equal size and the five of them which
are the interior angles at the vertex S in the five isosceles triangles sum up to 180◦. Hence the sum of the five marked
angles equals 5·180◦−180◦

2 = 360◦ and it follows that the size of the missing angle is 360◦ − 67◦ − 80◦ − 85◦ − 72◦ = 56◦.

Problem 3. Students have an opportunity to take part in three different athletics competitions. Each student has to
take part in at least one competition. In the end, 22 students have chosen the sprint race, 13 students have gone for the
long jump and 15 students have taken part in the shot put competition. Furthermore, we know that 8 students have
selected the sprint race and the long jump, 7 students have chosen the sprint race and the shot put, and 6 students
have decided in favor of long jump and shot put. There are 3 very ambitious students who have taken part in all three
competitions. How many students are there in this class?

Result. 32

Solution. Add the number of participants of the single competitions and subtract the number of students who
have chosen two competitions from the result. Hence, the very motivated students who have taken part in all
three competitions are subtracted once too often, their number has to be added. Therefore, the final result is
22 + 13 + 15− 8− 7− 6 + 3 = 32.

Problem 4. A number is called super-even if all of its digits are even. How many five-digit super-even numbers are
there such that when added to 24680 the result is also super-even?

Result. 90

Solution. There are five even one-digit numbers. To guarantee that the result is super-even, any two digits added
during the traditional addition algorithm must lead to a sum less than 10. Bearing in mind that a number cannot start
with zero, we have three possibilities (2, 4 and 6) for the first digit, another three possibilities for the second digit, two
possibilities for the third digit, one possibility at the fourth digit and five possibilities for the last one. Since these
choices are independent, we get 3 · 3 · 2 · 1 · 5 = 90 such numbers in total.

Problem 5. Once upon a time there was a wise King. His castle was in the centre of four concentric circular walls of
radii 50, 100, 150, 200 and the land surrounded by the largest wall was used as the castle grounds (including the land
inside the other walls). There were peaceful times, so he decided to tear down all four walls and build only one circular
wall, again with his castle as the center, of maximal possible radius from the material of the old ones. What is the
ratio of the area of the new castle grounds and the area of the old one (as a number greater or equal to one)?

Result. 25
4
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Solution. We know that the sum of the perimeters of the four circular walls will be the perimeter of new circular wall.
Denote the radius of the new circular wall by r. Then

2π · 50 + 2π · 100 + 2π · 150 + 2π · 200 = 2π · r

implies that r is the sum of the given radii, i.e. r = 500. Hence, the desired ratio is π·5002
π·2002 = 25

4 .

Problem 6. Zoe is trying to open a lock. She knows the following about its four-digit code:

• all of its digits are different,

• 137 and 17 divide it,

• the sum of its digits is the smallest possible prime.

What is the code?

Result. 9316

Solution. Since the sought number is divisible by the primes 137 and 17, it must be a multiple of 137 · 17 = 2329.
Observe that this number does not comply with the conditions and that this number only can be multiplied by 2, 3, or
4 to stay a four-digit number. We compute 2329 · 2 = 4658, 2329 · 3 = 6987 and 2329 · 4 = 9316, which have sums of
digits 23, 30, and 19, respectively. Because 19 is the smallest occurring prime, the number 9316 opens the lock.

Problem 7. There are four polygons on the table – an equilateral triangle with unit side length and three other
congruent regular polygons with unit side lengths as well. Every two of the four polygons share exactly one side and no
two of them overlap. What is the perimeter of the resulting shape, not counting the shared sides?

Result. 27

Solution. Let us assume the congruent polygons have n sides each. Then the resulting shape has 3(n− 3) sides, since
three sides of all polygons including the triangle are shared. We only need to determine n. Since the outer angle of the
equilateral triangle is 300◦, the inner angle of the congruent polygons must be 150◦. Since the sum of inner angles of
any n−gon equals (n− 2) · 180◦, we have to solve the equation 150n = 180(n− 2), which holds for n = 12. Plugging
into the above formula, we obtain that the resulting polygon has 3 · 9 = 27 sides.

Problem 8. There is an equilateral triangle with several marked points (including its three vertices) on its boundary
dividing each of its sides into 2021 congruent segments. Determine the number of all equilateral triangles with vertices
in these marked points. The figure shows one of such triangles in case that each side of the given equilateral triangle
was divided into 6 congruent parts.

Result. 8081

Solution. Let us refer to equilateral triangles just as to triangles. There is the original triangle, then 3 · 2020 triangles
sharing exactly one vertex with the original triangle (2020 for each vertex) and there are 2020 rotated triangles (as on
the picture from the statement) sharing no vertex with the original one. It is easy to see that these triangles are all
distinct and there is no other such triangle. Altogether, we have 1 + 3 · 2020 + 2020 = 8081 desired triangles.

Problem 9. Veronica cuts off the four corners of a square sheet of paper in such a way that a regular octagon
remains. The cut off material has a total area 300. What is the side length of the regular octagon?

Result.
√

300 ≈ 17.32051
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Solution. The interior angles of regular octagon are 135◦. Therefore Veronica cuts off four right-angled isosceles
triangles which may be assembled in a square with the side length of the regular octagon. As a consequence, the side
length of the regular octagon equals

√
300.

135◦

45◦

45◦

Problem 10. Find the largest three-digit positive integer n with the following properties:

• the sum of digits of n is 16,

• the product of digits of n is not 0, but the units digit of this product is 0,

• the sum of digits of the product of digits of n is 3.

Result. 853

Solution. From the second condition we obtain that at least one digit of n has to be 5 and at least one digit has to
be even. However, none of the digits may be 0. Taking this into consideration, we derive the possibilities 5, 2, 9 or
5, 4, 7 or 5, 6, 5 or 5, 8, 3 from the first condition. From these values only 5, 8, 3 fulfill the last condition and hence
the largest three-digit integer satisfying the conditions is 853.

Problem 11. Exactly five digits are to be removed from the number 6437051928 so that the resulting five-digit
number is the largest possible. What will the resulting number be?

Result. 75928

Solution. The largest ten-thousand-digit that can be achieved by removing at most five digits from the left is 7, so we
need to remove the first three digits. By analogous arguments we conclude that the optimal choice is then finished by
removing digits 0 and 1. Therefore, 75928 is the sought answer.

Problem 12. Let n be a positive integer. Now consider the increasing sequence Sn starting with 1 and having
constant difference n between one term and the next term. For instance, S2 is the sequence 1, 3, 5, . . . For how many
values of n does Sn contain the number 2021?

Result. 12

Solution. The number 2021 appears as a term in the sequence Sn if and only if 2021 = 1+an for some positive integer a.
In other words, 2020 = an, so n has to be a divisor of 2020. The prime factorization of 2020 is 2020 = 22 · 5 · 101. Any
divisor of 2020 is obtained by multiplying some of these primes. We can take the prime 2 zero, one or two times, that
gives 3 possibilities. The prime 5 can be taken or not – giving 2 possibilities and the same holds for 101. In total, we
have 3 · 2 · 2 = 12 possibilities how to choose a divisor of 2020. Hence 2021 is a term in 12 sequences Sn.

Problem 13. There is a straight 90-meter-long corridor with ten windows, each two neighbouring being 10 meters
apart. Tommy placed seven robots by seven different windows, and switched them all on at the same time. When
switched on, each robot moves at a constant speed of 10 meters in a minute in one of the two directions until it reaches
the end of the corridor where it instantly turns and continues in the same manner in the opposite direction. Tommy
was measuring the time until the first moment when every robot met all the others. Determine the largest possible
value he could have measured in seconds.

Result. 510

Solution. For a given robot A we can determine the window and direction of a robot which would meet A in the
longest possible time – it is the window right behind A heading in the opposite direction (if placed by one of the end
windows, we assume that a robot is heading out of the corridor in this argument). The time to the first meeting is then
easily computed to be 8.5 minutes which is equal to 510 seconds.
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Problem 14. Inside the parallelogram ABCD there is a point P such that the area of the triangle CDP is three
times the area of the triangle BCP and one third the area of the triangle APD. Find the area of the triangle ABP if
the area of the triangle CDP is 18.

C

BA

D

P

Result. 42

Solution. From the formula for the area of a triangle “side length times the corresponding altitude divided by two” we
deduce that triangles APD and BCP cover half of the area of the parallelogram. Therefore the area of triangle ABP
equals (

1

3
+ 3

)
· 18− 18 = 42.

Problem 15. Dividing 1058, 1486 and 2021 by a certain positive integer d > 1 leaves always the same remainder.
Find the number d.

Result. 107

Solution. The distances between the three numbers are 1486− 1058 = 428 and 2021− 1486 = 535. Since the numbers
given leave the same remainder when divided by d, the distances have to be multiples of d. The greatest common
divisor of 428 and 535 is the prime 107, which is the sought integer d.

Problem 16. In the football stadium the substitutes’ bench has fourteen single chairs. The new management of
the team consisting of coach, assistant coach, manager and physiotherapist wants to become acquainted with all the
players. Therefore, during the game they want to sit on the bench among the ten substitute players in such a way that
each member of the management sits between two players. In how many ways can the members of the management
choose their four chairs to achieve this?

Note: Using two different orders on the same four chairs counts as two different ways.

Result. 3024

Solution. Imagine the ten substitute players standing in a row. There are nine gaps between the ten players and each
gap can be occupied by at most one member of the trainer team. Therefore they have 9 · 8 · 7 · 6 = 3024 possibilities to
sit in the desired way.

Problem 17. A regular pyramid has a square base of area 1. The surface area of the whole pyramid equals 3. What
is its volume?

Result.
√
3
6 ≈ 0.288675

Solution. The base has sides of size 1. As the whole pyramid has surface area 3, each of its four triangular faces has
the area 1

2 and height equal to 1. Thus a cut through its vertex and heights of two opposite faces creates an equilateral

triangle of side 1 whose height 1
2

√
3 is the same as the height of the pyramid. The volume of the pyramid equals one

third of the base surface area times the height, namely 1
3 · 1 ·

1
2

√
3 = 1

6

√
3.

Problem 18. The magical Cana machine transforms liquids. If it gets pure water, it converts 6 % of it to wine and
keeps the remaining 94 % unchanged. If it gets pure wine, it converts 10 % of it to water and keeps the remaining
90 % unchanged. If it gets a mixture, it acts on the components separately as described above. Mary bought water
and wine, 6000 liters in total, and poured everything into her Cana machine. After the machine had stopped, Mary
realised that the mixture remained unchanged. How many litres of wine were there?

Result. 2250

Solution. Denote by x the amount of wine, and by z the amount of water in litres before the Cana machine was used.
We know that 0.06z litres of water gets converted into wine and 0.1x litres of wine to water and that x is the same
before and after running the machine. Hence, we must have 0.06z = 0.1x. Given that x + z = 6000, we can write
0.06(6000− x) = 0.1x. Solving for x leads to 6000 · 38 = 2250 litres of wine.
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Problem 19. The figure shows an equilateral triangle with its incircle and its circumcircle. Find the area of the
shaded region, if the area of the circumcircle is 140.

Result. 35

Solution. It is easy to compute that the radius of the incircle of an equilateral triangle is half the radius of its
circumcircle. Thus the area of the incircle equals 140

4 = 35. Furthermore, the shaded area is exactly one third of the
annulus given by the two circles, i.e. 35 as well.

Problem 20. If the product of 2021 positive integers equals twice their sum, what is the largest possible value of one
of them?

Result. 4044

Solution. Let us denote the positive integers as c1 ≥ c2 ≥ · · · ≥ c2020 ≥ c2021 ≥ 1. We wish to determine the largest
possible value of c1 assuming that the equation

c1 · · · c2021 = 2 · (c1 + · · ·+ c2021) (1)

holds. Dividing by the left-hand side and estimating the denominators from below by setting some of the numbers ci
to 1 yields

1 = 2

(
1

c2 · · · c2021
+ · · ·+ 1

c1 · · · c2020

)
≤ 2

(
1

c1
+

1

c2
+

2019

c1c2

)
= 2 · 2019 + c1 + c2

c1c2
.

Multiplying by c1c2 and rearranging then gives

(c1 − 2)(c2 − 2) = c1c2 − 2c1 − 2c2 + 4 ≤ 2 · 2019 + 4 = 4042.

If c2 ≥ 3 we get c1 ≤ 4044 and the choice c1 = 4044, c2 = 3 and c3 = · · · = c2021 = 1 satisfying the equation (1) shows
that this value can be attained. On the other hand, if c2 ≤ 2 then the numbers c2 ≥ c3 ≥ · · · ≥ c2021 consist of k ≥ 0
twos and 2020− k ones and the equation (1) reads as

c12k = 2(c1 + 2k + 2020− k).

It can be further simplified to c1(2k−1 − 1) = 2020 + k and we observe that for k ≤ 1 there is no c1 satisfying this
equation and for k ≥ 2 we have

c1 =
2020 + k

2k−1 − 1
≤ 2022 < 4044,

so the result is 4044.

Problem 21. The nine small triangles in the picture below are to be filled-in with distinct positive integers such
that any two numbers in triangles sharing a side have a common divisor greater than 1. What is the smallest possible
sum of the nine numbers filled in?
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Result. 59

Solution. First of all, observe that there are three cells with one neighbour, three ones with two and three ones with
three neighbours. This means, if a prime p is one of the nine numbers, at least one multiple of p has also to be among
the nine numbers. Secondly, note that 1 can not be one of the nine numbers. Denote the sum of a valid filling by S.

If there is a prime p ≥ 11 in a valid filling, then at least one multiple k · p with k ≥ 2 must also be present. Fill the
remaining seven cells by the smallest available numbers, regardless whether they comply with the rules. Then

S ≥ 2 + 3 + 4 + 5 + 6 + 7 + 8 + p+ k · p = 35 + (k + 1) · p ≥ 35 + 33 = 68.

Now we assume no prime p ≥ 11 is present in a valid filling and consider four subcases:

• Both the numbers 5 and 7 are present:

S ≥ 5 + k5 · 5 + 7 + k7 · 7 + 2 + 3 + 4 + 6 + 8 = (k5 + 1) · 5 + (k7 + 1) · 7 + 23 ≥ 15 + 21 + 23 = 59.

• Number 5 is present, but there is no 7:

S ≥ 5 + k · 5 + 2 + 3 + 4 + 6 + 8 + 9 +

{
10 ≥ 20 + 32 + 10 = 62 for k ≥ 3,

12 = 15 + 32 + 12 = 59 for k = 2.

• There is neither 5 nor 7:
S ≥ 2 + 3 + 4 + 6 + 8 + 9 + 10 + 12 + 14 = 68.

• Number 7 is present, but there is no 5:

S ≥ 2 + 3 + 4 + 6 + 7 + 8 + 9 + 10 + k · 7 ≥ 49 + 14 = 63.

Altogether, we can conclude that 59 is a candidate for the minimal sum. In fact, both sets of numbers from above
having sum 59 can be filled in according to the rules:

5

2

3 8 9

4
10

6 12

5

2

3 8 7

4
10

6 14

Therefore, the answer is 59.

Problem 22. Lotta is repeatedly drawing the same house: it consists of two congruent squares and an isosceles
right-angled triangle serves as the roof. Each new house is put in line next to the existing ones. Here you can see her
first three houses:

What is the minimum number of houses she has to draw in order to count at least 2021 triangles in her drawing?

Result. 93

Solution. Define the area of one house to be 3. In the first house, there are 8 triangles of area 1
4 , 8 triangles of area

1
2 , and 3 triangles of area 1. These add up to 19. In the second house, we can find the same number of triangles as
in a single house plus 2 triangles of area 1 which reach from one house into the other. Therefore, the second house
provides 21 triangles.

Starting at house number 3, each additional house contributes the number of triangles of the second house plus
one triangle of area 4 which ranges over three houses. So, for each additional house, there are 22 triangles. Since
2021− 19− 21 = 1981 and 1981 = 90 · 22 + 1, Lotta has to draw 2 + 90 + 1 = 93 houses.
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Problem 23. Each of the five triangles N , á, b, o, j has the same area. Find AB if CD = 5.

A B C D E

F

G

N

á

b
o j

Result. 15
4

Solution. The area ratio between the triangles BEG and BEF is 4 : 3. Since these triangles have the same base line
BE, the respective heights must have the ratio 4 : 3, too. Since the triangles ABG and CDF have the same area, we
conclude that AB = 3

4CD = 15
4 .

Problem 24. Anna has a large rectangular sheet of paper with side lengths 2155 and 2100. She cuts off a strip of
width 1 along the longer side, then, continuing clockwise, a strip of width 2 along the shorter side and again a strip of
width 3 along the longer side. She continues to cut off strips of widths increasing by one as long as this is possible, see
the following picture.

2155

2100

2

3

4

5

1

Eventually, she ends up with a rectangle from which she cannot cut off any strip of increasing width anymore. Find
the area of this rectangle.

Result. 6375

Solution. Anna may cut off strips of odd width as long as

1 + 3 + · · ·+ 2n− 1 = n2 < 2100.

Since
452 = 2025 < 2100 < 2116 = 462,

the strip of width 89 is the last one possible having odd width. Furthermore, she may cut off strips of even width as
long as

2 + 4 + · · ·+ 2n = n(n+ 1) < 2155.

Due to
45 · 46 = 2070 < 2155 < 2162 = 46 · 47,

the strip of width 90 is the last one possible having even width. Therefore, as she can cut off all 90 strips, the remaining
rectangle has the area

(2100− 2025) · (2155− 2070) = 75 · 85 = 6375.
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Problem 25. One of two identical rings of radius 4 and unknown width w lies horizontally on a table while the
second one is oriented vertically, it touches the first one at exactly four points (see the figure) and its lowest point lies
at the height 1 above the table. What is w?

Result. 10
3

Solution. Let us denote the desired width by w and look at the figure depicting the vertical projection of the two
rings onto the table.

w
xx

The altitude of the lowest point(s) of the vertical ring above the table is then 1 = w − x. Hence

8 = 2x+ w = 2(w − 1) + w = 3w − 2

and thus w = 10
3 .

Problem 26. A polynomial of degree 14 has integer coefficients, the leading one being positive, and 14 distinct
integer roots. Its value p at zero is positive. Determine the lowest possible p.

Result. 29030400

Solution. The polynomial can be written as c · (x − a1) · (x − a2) · · · (x − a14) for some pairwise distinct integers
a1, a2, . . . , a14 and a number c. The leading coefficient is then equal to c, so c is positive. The value at 0 equals the
constant coefficient, that is the product c · a1 · a2 · · · a14. As we want to minimize it, we set c as small as possible,
that is c = 1. To minimize the remaining product of the roots, we have to take them as close to zero as possible,
that is 1,−1, 2,−2, . . . However, we have to choose an even number of negative integers, which leads to the result
6! · 8! = 29030400.

Problem 27. Beata writes the digits 4, 5 and 7 using two strokes and every other digit using one stroke. How many
strokes does she use when she writes all integers from 1 to 2021 including these two numbers?

Result. 8783

Solution. When she writes the integers from 1 to 2021, she writes 9 one-digit numbers, 90 two-digit numbers, 900
three-digit numbers and 2021− (9 + 90 + 900) = 1022 four-digit numbers. In total, she writes

9 + 90 · 2 + 900 · 3 + 1022 · 4 = 6977

digits. For each digit, she does one stroke, while she does one additional stroke for each digit which equals 4, 5 or 7. So
it is sufficient to count how many of these digits are written. Since the number 2021 contains none of the digits 4, 5 or
7, we consider only integers up to 2020.
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Let us count the digits 4 she writes. There is 1
10 of all numbers up to 2020 which has the digit 4 in the ones place,

i.e. 202 numbers. The digit 4 occurs in the tens place in 1
10 of the numbers up to 2000 and in no number between 2001

and 2020. Altogether that is 200 times. Similarly, the digit 4 occurs in hundreds place 200 times. In total, the digit 4
is written 202 + 200 + 200 = 602 times. The same goes for the digits 5 and 7.

To conclude, she writes 6977 digits while 3 · 602 = 1806 of them are 4, 5 or 7. Therefore, she does

6977 + 1806 = 8783

strokes.

Problem 28. The table below should be filled with the numbers 1, 1, 2, 2, . . . , 8, 8 in such a way that for every used
number n there are exactly n other cells between the two occurrences of n. Three of these numbers are already placed
in advance:

6 7 2

Insert the remaining numbers according to the rules and give the 4-digit integer number in the shaded area as a solution.
For 1, 1, 2, 2, 3, 3 a correctly filled example would be:

3 1 2 1 3 2

Result. 3845

Solution. For the ease of notation we treat the table given as an array f with sixteen entries. From the three entries
given, f(6) = 6, f(7) = 7, f(9) = 2, we uniquely get f(13) = 6, f(15) = 7, and f(12) = 2.

6 7 2 2 6 7

In principle there are two different strategies: either to look, where a specific pair of numbers may be placed, or to
consider which numbers are possible in a specific cell like in Sudoku.

For example we can look for the possibilities to fill in the pair of 3. There are three possibilities: either f(1) = f(5) = 3
or f(4) = f(8) = 3 or f(10) = f(14) = 3.

It is easy to see that f(10) = f(14) = 3 leaves the only possibility f(16) = 4 to fill f(16) and, as a consequence, we
get f(11) = 4. But now we cannot place the pair of 8 anymore. The case f(4) = f(8) = 3 results in two possibilities for
the pair of 5, namely f(5) = f(11) = 5 or f(10) = f(16) = 5. Both alternatives produce a contradiction immediately,
as we can’t place the pair of 4 in neither case.

Now f(1) = f(5) = 3 leaves the unique possibility f(2) = f(11) = 8 and the only way to fill the remaining cells
according to the rules is f(3) = f(8) = 4, f(14) = f(16) = 1 and finally f(4) = f(10) = 5.

3 8 4 5 3 6 7 4 2 5 8 2 6 1 7 1

Therefore the unique solution asked for is 3845.

Problem 29. A convex hexagon ABCDEF with intersection G of its diagonals BE and CF satisfies the following
properties as indicated in the sketch: AB = 7.5, BG = 5, GE = 3, GF = 4.8, ∠BAF = ∠CDE, ∠ABG = 50◦,
∠CBG = 65◦, AB is parallel to CF , and CD is parallel to BE. Determine the length of CD.

A

B

C

D

E

F

50◦
65◦

7.5

3

4.8

5

G
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Result. 5.7 = 57
10

Solution.

A

B

C

D

E

F

50◦
65◦

7.5

3
5

5

G

D′

E′

8

4.8

?

65◦

65◦

Since 50◦+ 65◦+ 65◦ = 180◦ and due to the two pairs of parallel segments, this is exactly the configuration obtained by
folding the parallelogram AE′D′F along a suitable segment BC (it is indeed a parallelogram as ∠BAF = ∠CDE; see
the sketch). Equivalently, one gets the same result by mapping the vertices D, E along the line BC. Observing moreover
that the triangle BCG is isosceles, the length conditions yield CD = AB +BE′ − CF = AB + EG− FG = 5.7.

Problem 30. Nadja and Selina are playing the game Battleship. Among other ships, everybody has got a battle
cruiser with an airfield for helicopters of the following shape:

Nadja hides her battle cruiser somewhere in the 12× 12 grid of the playing field. Since they are playing the game using
pencil and paper, the above figure of the battle ship can be rotated and flipped over. At least how many times does
Selina have to shoot, i.e. to select a square of the grid, to be certain to hit Nadja’s battle ship at least once?

Result. 36

Solution. Consider a 4 × 2 block. As can be seen in the first two pictures, choosing exactly one square does not
guarantee a hit, since there is still an option to place the battle cruiser without being hit. Furthermore, it is clear that
the choice of any square in one row and another square in the other row prevents hiding the battle cruiser in this block.
The third picture shows an example for that. Therefore, two shots into a 4× 2 block are necessary, yielding at least
18 · 2 = 36 shots in total.

On the other hand, the following diagonal pattern of the 12× 12 grid demonstrates that 36 shots are also sufficient to
ensure at least one hit on the battle cruiser.
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Problem 31. For a fixed positive integer a we construct an acute-angled triangle ABC such that BC = a and
lengths hb, hc of the corresponding altitudes are integers as well. Given that the greatest possible area of such triangle
is 101.4, determine a.

Result. 13

Solution. As ABC is acute-angled, we obtain hb < a and hc < a. On the other hand, it is easy to see that in order to
maximize the area S = 1

2aha, both altitudes hb and hc should be as long as possible (indeed, prolongation of, say, the
altitude hb keeping the condition hb < a with hc fixed makes ha longer as well). Therefore hb = hc = a− 1 and ABC
is isosceles. Let us denote the midpoint of BC by M and the foot of the altitude hc by C0. From the Pythagorean
theorem for similar right triangles ABM ∼ CBC0 we compute

101.4 = S =
1

2
aha =

a2(a− 1)

4
√

2a− 1
.

Since 101.4 is a rational number, the integer 2a − 1 must be an odd square, say (2k + 1)2 for some integer k ≥ 0,

and hence a = (2k+1)2+1
2 ∈ {1, 5, 13, 25, 41, . . . }. Checking the first few values and realizing that the area is strictly

increasing in a, we quickly find the correct answer a = 13.

Problem 32. Ludwig computed the sum of 1000 positive integer numbers and got the value 1 200 500. If these
numbers are arranged in ascending order, then the difference between two consecutive numbers is either 2 or 7. The
smallest of the numbers is 101. Now he wants to maximize the largest number within this sum by keeping all other
conditions fulfilled. What is the maximum value possible for this number?

Result. 3099

Solution. Let 101 = n1, n2, . . . , n1000 denote the positive integers. Assuming that the difference between two consecutive
numbers would always be 2, we get

n1000 = 101 + 2 · 999 = 2099,

1000∑
i=1

ni = 2200 · 500 = 1 100 000.

Therefore, the difference between Ludwig’s sum and the minimal possible sum is 100 500 = 20 100 · 5. If ni+1 − ni = 7
instead of 2, then the sum is increased by (1000 − i) · 5 and n1000 is increased by 5. As a consequence, in order to
maximize n1000 considering a constant sum of 1 200 500, the distances of 7 should be put at the highest indices possible.
Luckily, the value 20 100 is the triangular number 1

2 · 200 · 201. Therefore, if Ludwig changes the distances ni+1 − ni for
i = 800, . . . , 999 to 7 instead of 2 compared to the minimal sum above, he gets the largest possible

n1000 = 101 + 2 · 999 + 200 · 5 = 3099.

Problem 33. What is the smallest positive integer that can be written using only the digits 2 and 9, has an odd
number of digits, and is divisible by 11?

Result. 29 292 929 292

Solution. Our solution requires a little modular arithmetic. Observe that 100 mod 11 = 1. This means that
multiplying by 100 does not change a number’s remainder modulo 11. Now suppose a number’s decimal expansion
contains the same digit a twice in a row. This number has the form x · 10n+2 + 11a · 10n + y. Crossing out the
consecutive a’s we get the number x · 10n + y which has the same remainder modulo 11. All of this means that our
answer cannot contain a pair of consecutive 2’s or 9’s, for otherwise we could cross them out and get a smaller positive
integer, still with an odd number of digits, and still divisible by 11. Now we simply try longer and longer strings of the
form 2929 . . . 292 or 9292 . . . 929 until we find the smallest such number that is divisible by 11.

The solution is even easier to find if one knows the divisibility criterion for 11. A number is divisible by 11 if and
only if the sum of the digits in even positions minus the sum of the digits in odd positions is divisible by 11. This
immediately implies that our answer cannot contain a pair of consecutive 2’s or 9’s, for otherwise we could cross
them out and get a smaller solution, as before. Since 2’s and 9’s must alternate, we look for the smallest n such that
2n− 9(n+ 1) is a multiple of 11, or 9n− 2(n+ 1) is. In each case the solution is n = 5, which yields the candidates
29 292 929 292 and 92 929 292 929. We take the smaller of these two numbers.

Problem 34. Let ABCDE be a regular pentagon and F be the intersection of diagonals AD and BE. The isosceles
triangle AFE can be completed to a regular pentagon AFEXY , let us denote it p. There is another regular pentagon,
q, the vertices of which are the intersections of all the five diagonals of ABCDE. Given that AF = 1, what is the
largest distance between a vertex of p and a vertex of q?

11



Result. 3+
√
5

2 ≈ 2.61803

Solution. Observe that the two pentagons, p and q, are homothetic with center F , therefore the line segment between
X and Z, one of the two possible pairs of points of p and q maximizing the distance, passes through F .

A B

C

D

E

FX
Z

p

q

Y

Straightforward angle chasing reveals the following facts:

• ∠AFE = 108◦, hence AE = 1
2 (1 +

√
5) by the Law of Cosines,

• triangles AFZ, XFD and DFE are isosceles.

Therefore
XF = DF = DE = AE = 1

2 (1 +
√

5)

and ZF = AF = 1. The sought distance is XF + ZF = 1
2 (3 +

√
5).

Problem 35. Consider all the triples (a, b, c) of prime numbers solving the equation

175a+ 11ab+ bc = abc.

What is the sum of all possible values of c in these solutions?

Result. 281

Solution. We can transform the equation to a(bc− 11b− 175) = bc. From this we see that either a = b or a = c since
all the variables should be primes. In the first case, we get

ac− 11a− 175 = c ⇐⇒ (a− 1)(c− 11) = 186,

giving only the solution (2, 2, 197) in primes. The second case yields

ab− 11b− 175 = b ⇐⇒ 175 = b(a− 12),

and the other two solutions in primes are (47, 5, 47) and (37, 7, 37). Therefore the value sought is 197 + 47 + 37 = 281.

Problem 36. Tom and Mary want to buy a house. They look for a perfect place, but their definitions of “perfect”
differ. They found 10 offers and decided to try the following decision process: they both rank the houses randomly
(a draw is not allowed) and if the top-three houses of Mary and Tom have exactly one house in common, they buy this
house. What is the chance that this process succeeds?

Result. 21
40

Solution. For any ranking of Mary, Tom needs to have exactly one house of Mary’s top 3 in his top 3 and the remaining
two of Mary’s top 3 among his rankings 4 to 10. So for any ranking of Mary, Tom has a chance of(

3
1

)
·
(
7
2

)(
10
3

) =
21

40
.

12



Problem 37. Let us define polynomials

p(x) = ax2021 + bx2020 + · · ·+ ax2k−1 + bx2k−2 + · · ·+ bx2 + ax+ b

and
q(x) = ax2 + bx+ a,

where a and b are positive real numbers. We know that q(x) has precisely one real root. Find the sum of all real roots
of p(x).

Result. −2

Solution. Since the polynomial p(x) can be factorized into (ax+ b)(x2020 + x2018 + · · ·+ x2 + 1) where the second
factor is positive, the only real root of p(x) is x = −b

a . Given that the quadratic polynomial q(x) has only one real root,
it must be a double root. Hence we get b2 − 4a2 = 0 for the discriminant, and since a, b are positive we can say b = 2a.
Therefore, the only real root equals x = −b

a = −2a
a = −2.

Problem 38. Find the sum of all prime numbers p such that there exists some positive integer n such that the
decimal expansion of n

p has the shortest period of length 5.

Result. 312

Solution. We can assume that n < p and that the decimal expansion of n
p is 5-periodic starting right after the decimal

point. Indeed, if n
p is only eventually periodic, one can shift the decimal point by multiplying n by a suitable power of

10 and then, if n ≥ p, we can replace it by n′ < p such that n = kp+ n′: this only “erases” the part in front of the
decimal point.

If 0.ABCDE is the periodic decimal expansion of n
p then 99999 · np = 105 · np −

n
p = ABCDE is an integer. Since

n < p and p is a prime, it follows that p | 99999, that is p | 32 · 41 · 271. Both 1
3 and 2

3 have the shortest period 1, but
1
41 = 0.02439 and 1

271 = 0.00369 are of the desired type. Therefore, the result is 41 + 271 = 312.

Problem 39. Four people are sitting in a room, each of them speaks exactly three of these five languages: Czech,
German, English, Polish, and Hungarian. They don’t speak any other language. We can see that in total there are
10000 ways to assign the languages to people. In how many of these scenarios can someone give a talk in a language
that all of them understand?

Result. 5680

Solution. We will use the inclusion–exclusion principle to compute the result. Let us number the languages in some
order by 1, . . . , 5. Denoting by Ai the set of assignments of the languages to the people such that all of them speak the

i-th language, we are asked for
∣∣∣⋃5

i=1Ai

∣∣∣, the size of the union of the sets. Firstly, |Ai| =
(

4

2

)4

= 64 since we can

choose the two of the four remaining languages for all the four people independently. There are 5 possible choices of
i. For any fixed i 6= j, we similarly obtain that |Ai ∩Aj |, the number of language assignments for which everybody

speaks both the i-th and the j-th language equals 34. Clearly, there are

(
5

2

)
= 10 such pairs of indices i 6= j. Finally,

there is exactly one assignment where all the people speak the same fixed three languages and there are

(
5

3

)
such

choices of three different languages (in our notation, we just observed that |Ai ∩Aj ∩Ak| = 1 for any of the 10 choices
of pairwise different indices i, j, k ). The aforementioned inclusion–exclusion principle then yields∣∣∣∣∣

5⋃
i=1

Ai

∣∣∣∣∣ = 5 · 64 − 10 · 34 + 10 = 6480− 810 + 10 = 5680.

Problem 40. Julie writes down all the fractions whose numerators and denominators are positive integers smaller or
equal to 100, erases any which are not in lowest terms and then lists the rest from least to greatest. In Julie’s list,
which fraction comes immediately before 2

3?

Result. 65
98

Solution. We should try fractions with denominators as large as possible, because if a
b is less than 2

3 , then a+2
b+3 is

greater than a
b and still less than 2

3 . In particular, this means that we should try the denominators 98, 99, and 100.
Thus, the possible solutions are 65

98 , 65
99 , and 66

100 = 33
50 . Comparing these fractions, we find that

65

99
<

33

50
<

65

98
<

2

3
.
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Problem 41. Twenty-three black unit cubes are placed in a 6 × 6 × 6 grid. The figure shows what the resulting
object looks like from above (the left square) and from the front (the right square). A white square means that there is
no black cube in the respective column. The common edge of the two corresponding faces of the grid is marked in red.
Determine the surface area of the black object.

Result. 130

Solution. The perimeter equals the sum of the perimeters of the black unit cubes minus twice the number of faces
shared by a pair of black cubes. Such a pair can be oriented in three directions, let us call them “up-down”, “front-back”
and “left-right”. If the “left-right” case occurs, it must appear also as a pair of two black squares sharing a vertical
side separating the same two columns in both of the projections. Checking column by column, we easily check that
this never happens. The “front-back” cases must affect the left square – it happens twice in the first column. As the
first column of the front overview contains a single black cell, the positions of the black cubes in the leftmost layer
of the big cube are uniquely determined and there are indeed two vertical faces shared by two black cubes. The last
case “up-down” can be treated similarly revealing that it contributes two shared faces (due to the fifth columns of the
projections). We conclude that the desired surface area is 6 · 23− 2 · 4 = 130.

Problem 42. A dividing decomposition of the positive integer N is a sequence of positive integers d1, d2, . . . , dk
such that k ≥ 1, d1 6= 1, the divisibility conditions d1 | d2 | d3 | · · · | dk | N hold, and d1 · d2 · · · dk = N . We will
call the number dk the leader of the decomposition. What is the arithmetic mean of the leaders among all dividing
decompositions of 720?

Result. 204

Solution. We have 720 = 24 · 32 · 5. The exponents of any prime p in d1, d2, . . . , dk form a non-decreasing sequence,
which sums up to the exponent of p in 720. For the prime 2, this sequence might be (1, 1, 1, 1), (1, 1, 2), (2, 2), (1, 3),
(4) or any of these preceded by some number of zeros. For 3, the sequences end (1, 1) or (2). For 5, there is just (1).
Any combination of these sequences gives us a dividing decomposition. Therefore, there are 10 dividing decompositions
of 720 and the arithmetic mean of their leaders is 2+4+4+8+16

5 · 3+9
2 · 5 = 204.

Problem 43. The Scrabboj game set consists of a 5× 1 board and a bag of distinguishable tiles. On each tile exactly
one letter out of N , A, B, O, J is written. How many different sets of Scrabboj are there for which the total number of
ways to compose the word NABOJ is equal to 1440?

Result. 9450

Solution. Denote by n, a, b, o, j the numbers of tiles with letters N , A, B, O, J , respectively. We are looking for the
number of 5-tuples (n, a, b, o, j) with

n · a · b · o · j = 1440 = 25 · 32 · 5.

Exponents of each prime can be independently distributed among the numbers n, a, b, o, j and different distributions
yield different 5-tuples. For example for the prime 2, we need to divide 5 objects into 5 boxes. This can be done in

(
9
4

)
ways, indeed we can choose which of 9 things are objects and which ones are dividers between the boxes. Similarly,
for 3 there are

(
6
4

)
ways and for 5 there are

(
5
4

)
ways. Therefore there are(

9

4

)
·
(

6

4

)
·
(

5

4

)
= 126 · 15 · 5 = 9450

different Scrabboj sets.

Problem 44. Find the largest positive integer n such that 42021 + 4n + 43500 is a perfect square.

Result. 4978
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Solution. Assume that the largest such integer n is at least 2021. Then, after dividing 42021 + 4n + 43500 by

42021 =
(
22021

)2
, we get another square

1 + (2m)2 + 22958,

where m = n− 2021. Moreover, it is a square of a number larger than 2m: let us write

(2m)2 + 22958 + 1 = (2m + x)2

for some positive integer x. Then x · 2m+1 + x2 = 22958 + 1. The left-hand side is increasing in both m and x while the
right-hand side is a constant, so the solution with the largest m will have the smallest possible x. If we try to take
x = 1, then m = 2957 solves this equation and by reverting the previous argument we see that n = m+ 2021 = 4978
works. This justifies our initial assumption that the largest admissible n is at least 2021 and we conclude that 4978 is
the desired maximal value.

Problem 45. How many coefficients of the polynomial

P (x) =

2021∏
i=2

(xi + (−1)ii) = (x2 + 2)(x3 − 3)(x4 + 4) · · · (x2021 − 2021)

are positive (strictly bigger than zero)?

Result. 1021616

Solution. Consider the polynomial

Q(x) = P (−x) = (x2 + 2)(−x3 − 3)(x4 + 4) · · · (−x2021 − 2021) = (−1)1010(x2 + 2)(x3 + 3)(x4 + 4) · · · (x2021 + 2021)

and notice that all its nonzero coefficients are positive. We claim that these are exactly the ones corresponding to the
powers xk for k between the minimum possible one, i.e. 0, and the maximum possible one, i.e.

S := 2 + · · ·+ 2021 = 2043230,

except for exactly the two numbers 1 and S− 1. When we imagine the product of the 2020 factors defining Q expanded,
it is clear that there will be no linear terms and it is also easy to see that the same holds for xS−1: if we choose the
power of x from every bracket, we obtain xS , otherwise the exponent is at most S − 2.

Now we prove that every other exponent from the range above is present with a positive coefficient or, equivalently,
that the smallest number m larger than 1 that cannot be written as a sum of a subset of {2, 3, . . . , 2021} equals S − 1.
We claim that

m− 1 = k + (k + 1) + · · ·+ 2021

for some k ∈ {2, 3, . . . , 2021}. Indeed, clearly m ≥ 3 and hence it must be possible to write m− 1 as a sum of some
subset of {2, 3, . . . , 2021}. Moreover, for every subset different from {k, k + 1, . . . , 2021} we can just increase one of the
numbers in the sum by 1 and obtain a valid representation of m. Moreover, k ≤ 3 as otherwise

2 + (k − 1) + (k + 1) + · · ·+ 2021

is a way to express m. Hence m = 1 + 3 + 4 + · · ·+ 2021 = S − 1.
Therefore Q(x) has S

2 + 1 positive coefficients at even powers of x and S
2 − 2 positive coefficients at odd powers of x.

The original polynomial P (x) has the signs at the odd coefficients flipped, and hence it has exactly S
2 + 1 = 1021616

positive coefficients.

Problem 46. The Cube City of Tomorrow has a map that looks like a cubic grid 4× 4× 4. Every point with integral
coordinates is called a crossroad and every two crossroads of distance 1 are connected by a straight road. The crossroad
in the middle of the city, (2, 2, 2), is closed due to maintenance. David wants to go from the crossroad (0, 0, 0) to the
crossroad (4, 4, 4) via the shortest possible path along roads. How many possible paths are there?

Result. 26550

Solution. Firstly, we will calculate how many shortest paths there are without condition. We have to go from (0, 0, 0)
to (4, 4, 4). We have to take four roads in x direction, four in y direction and four in z direction, in any order. If we go
back, then the path will not be the shortest. That is 12!

4!·4!·4! possible paths.
Now we have to subtract those paths that go through crossroad (2, 2, 2). Due to symmetry we know that the number

of paths from (0, 0, 0) to (2, 2, 2) is equal to the number of paths from (2, 2, 2) to (4, 4, 4) and that is equal to 6!
2!·2!·2! . For

any path from (0, 0, 0) to (2, 2, 2), there are 6!
2!·2!·2! possible continuations from (2, 2, 2) to (4, 4, 4). Hence the number of

all roads through crossroad (2, 2, 2) is 6!
2!·2!·2! ·

6!
2!·2!·2! = 6!·6!

26 . The total number of paths is thus 12!
4!3 −

6!2

26 = 26550.
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Problem 47. An equilateral triangle is folded in such a way that one vertex hits exactly the opposite side and
the areas of the two newly formed non overlapping triangles are 100 and 64 as in the picture. Find the area of the
overlapping triangle.

?

100 64

Result. 98

Solution. The relevant points are labeled as in the picture.

A B

C

D

F

E

60◦

60◦ 60◦
60◦

Since triangle ABC is equilateral, we get ∠BDE + ∠DEB = 120◦ = ∠BDE + ∠FDA, i.e. ∠DEB = ∠FDA and
therefore ADF ∼ BED. Since the areas of these triangles have the ratio 100 : 64, the respective sides have the ratio
5 : 4. If we set r = DB, s = BE, t = ED, we get the lengths as labeled in the following picture.

5
4s

r

s

t

t

5
4 t

5
4r

5
4 t

We can derive the following equations using a for the side length of the equilateral triangle:

a = s+ t, (2)

a =
5

4
(r + t), (3)

a =
5

4
s+ r, (4)

64 =
1

2
rs · sin 60◦ = rs ·

√
3

4
. (5)
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The linear equations (2)–(4) yield r = a
3 and s = 8a

15 . Inserting these values in the equation (5) then gives

1440 = a2
√

3 = 4S

where S is the area of the equilateral triangle. It follows that the desired area A satisfies 100 + 64 + 2A = 360 and
hence A = 98.

Problem 48. Flip a fair coin repeatedly until the sequence heads-tails-heads occurs. What is the probability that
the sequence tails-heads-tails-heads has not yet occurred?

Result. 5
8

Solution. Let us denote by E the event that sequence “heads-tails-heads”, or simply HTH, occurs before THTH
and by P(E) its probability. For a fixed finite sequence s of heads and tails denote by P(E | s) the probability that E
occurs in a sequence starting by s and continuing randomly. Set x = P(E | H) and y = P(E | T ). Since our coin is fair,
moving one or two steps ahead (we always write the new outcome to the right end of the current sequence) we compute

x =
1

2
P(E | HH) +

1

4
P(E | HTT ) +

1

4
P(E | HTH) (6)

and analogously by moving up to three steps ahead we obtain

y =
1

2
P(E | TT ) +

1

4
P(E | THH) +

1

8
P(E | THTT ) +

1

8
P(THTH). (7)

Since both HTH and THTH are alternating sequences, we have

x = P(E | H) = P(E | HH) = P(E | THH),

y = P(E | T ) = P(E | TT ) = P(E | HTT ) = P(E | THTT ).

Moreover, as P(E | HTH) = 1 and P(E | THTH) = 0, equations (6) and (7) read as

x =
x

2
+
y

4
+

1

4
,

y =
y

2
+
x

4
+
y

8
.

That gives us x = 3
4 and y = 1

2 . The desired probability is then P(E) = 1
2 P(E | H) + 1

2 P(E | T ) = x+y
2 = 5

8 .

Problem 49. Find the smallest positive real number x with the following property: There exists at least one triple
of positive real numbers (s, t, u) such that

s2 − st+ t2 = 12,

t2 − tu+ u2 = x,

and no two triples with this property can differ in the last coordinate only.

Result. 16

Solution. Consider points S, T , U , and C in the plane such that CS = s, CT = t, CU = u and

∠SCT = ∠TCU = 60◦

as on the picture below. By the Law of Cosines (cos 60◦ = 1
2 ), the equations in the statement now imply ST 2 = 12 and

TU2 = x. Since the distance from T to line SC is at most
√

12 with the equality if and only if ∠TSC = 90◦, we obtain

t ≤
√

12

sin(60◦)
= 4.

S

C U

√
12

T

√
x

60◦
60◦

s

t

u
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In the following arguments we fix point C and the three rays emanating from it and move with any of the points S,
T , U only within the respective ray. If

√
x < 4, it is possible to place the segment TU in the angle UCT (i.e. to find

admissible values t, u) so that CU < CT ≤ 4 and ∠CUT 6= 90◦ (just put U very close to C). It follows from the first
inequality and the angle condition that the circle centered at T with radius

√
x intersects the ray CU in two different

points U and U ′ (see the second figure) which contradicts the given condition concerning the uniqueness of u. The
second inequality implies that the circle centered at T with radius

√
12 intersects the ray CS in at least one point S.

These two facts imply that x ≥ 4.

S

C U U ′

√
x

√
12

T

√
x

For
√
x = 4 (resp. for any fixed

√
x ≥ 4) and any 0 < t ≤ 4 there is only one such intersection U and hence the

mentioned condition is satisfied. Also, analogously as above, the circle centered at T with radius
√

12 intersects the ray
CS in at least one point S and hence the resulting triple (s, t, u) = (CS,CT,CU) solves the given system of equations
for our x. It follows that the smallest x satisfying the given conditions is 42 = 16.

Note. Alternatively, these geometric arguments can be replaced by using the characterization of the number of
solutions of a quadratic equation by its discriminant.

Problem 50. For how many x ∈ {1, 2, 3, . . . , 2020} is it possible that Marek summed 2020 non-negative consecutive
integers, Michal summed 2020 + x non-negative consecutive integers and they got the same result?

Result. 1262

Solution. Let n denote the first term of Marek’s sum and m the first term of Michal’s sum. Then

2020n+
2019 · 2020

2
= (2020 + x)m+

(2019 + x)(2020 + x)

2
,

2020(n−m) = x
2m+ 2019 + 2020 + x

2
. (8)

Since the left-hand side of (8) is divisible by four, so must be the right-hand side and hence 4 | x
(
m+ x−1

2

)
. It follows

that either x is odd (so that the bracket can be an integer divisible by four) or 8 | x (if x is even, then x− 1 is odd and
we lose one power of 2 at the fraction).

One can directly check that numbers x = 2k + 1 for k ∈ {0, 1, . . . , 1009}, m = 2020 − k and n = 2020 + 3k + 2
satisfy the equation (8). For x = 8k, k ∈ {1, 2, . . . , 252} one can similarly check that (8) holds for m = 1263− 4k and
n = 1263 + 9k (note that m and n are positive for all considered values of k).

In summary, we found 1010 + 252 = 1262 possible values of x and proved that there are no more.

Problem 51. Circles kB and kC touch circle kA in points P and Q, respectively. Find the radius rA of the circle kA,
if the radii of kB and kC are rB = 5 and rC = 3, respectively, PQ = 6 and the outer tangent segment TS = 12.

T

S

P

Q

kB

kA

kC
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Result. 4+
√
61

3 ≈ 3.93675

Solution. Let A, B, C denote the centres of the circles. Furthermore, let α = ∠QAP , β = ∠PBT , γ = ∠SCQ. Since
BT ⊥ TS and CS ⊥ TS we get α+ β + γ = 360◦ due to the sum of interior angles in pentagon TBACS.

T

S

P

Q

A

B

C

β

α

γ

Since TS is a tangent line to the circles kB and kC , we get ∠PTS = 1
2β and ∠TSQ = 1

2γ. Due to

∠SQP = 180◦ − (90◦ − 1

2
α)− (90◦ − 1

2
γ) =

1

2
(α+ γ),

we conclude that ∠PTS + ∠SQP = 180◦ and therefore quadrilateral PQST is cyclic. Let D denote the point of
intersection of the lines TP and SQ. Since PQST is cyclic, the triangles DST and DQP are similar, which leads to

PQ

TS
=
DP

DS
=
DQ

DT
.

Using again ∠PTS = 1
2β and ∠TSQ = 1

2γ, we get ∠SDT = ∠QDP = 1
2α, which means that D lies on circle kA.

T

S

P

Q

A

B

C

β

α

γ

D

Therefore we have ∠DPA = ∠TPB and the triangles APD and BPT are similar, too. By analogy, we get 4ADQ ∼
4CSQ. From these similarities we derive the relations

TP

DP
=
rB
rA

and
SQ

DQ
=
rC
rA

leading to
DT

DP
=
rA + rB
rA

and
DS

DQ
=
rA + rC
rA

.

Inserting these results in above equation gives

TS2

PQ2
=
DS

DP
· DT
DQ

=
(rA + rB) · (rA + rC)

r2A
.

Now we can compute rA by plugging in the values given and we obtain the quadratic equation

144

36
· r2A = r2A + 8rA + 15 ⇐⇒ 3r2A − 8rA − 15 = 0.
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The two solutions of this equation are given by

8±
√

64 + 12 · 15

6
=

4±
√

61

3
.

The only positive value from these solutions is 4+
√
61

3 ≈ 3.93675.
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