
Problem 1. If the arithmetic mean of four distinct positive integers is equal to 10, what is the largest possible value
of any of these integers?

Result. 34

Solution. To have one of the numbers as large as possible, the rest has to be as small as possible. Since the numbers
are distinct, the least three possible values are 1, 2, and 3. For the average to be equal to 10, i.e. the sum to be equal
to 4 · 10 = 40, the remaining number has to be 40− (1 + 2 + 3) = 34.

Problem 2. If 4 is a solution of the quadratic equation x2 +mx+ 2020 = 0 with an integer m, what is the other
solution?

Result. 505

Solution. Since 4 is a root, we get 42 + 4m+ 2020 = 0 or m = −509, so the equation now reads x2 − 509x+ 2020 = 0
with solutions 4 and 505.

Alternatively, if s is the other solution of the given equation, then

x2 +mx+ 2020 = (x− 4)(x− s) = x2 − 4x− sx+ 4s

and comparing the coefficients of the polynomials yields 4s = 2020 or s = 505.

Problem 3. Number 95 gives 4 as the remainder after division by a positive integer N . What is the least possible
value of N?

Result. 7

Solution. As N is larger than 1 and divides 95− 4 = 91 = 7 · 13, the smallest possible value is 7.

Problem 4. A square and a regular pentagon are as in the picture below. Find the angle α in degrees.

α

Result. 54◦

Solution. Let us label the points as in the picture.

α

A B

C
H

The size of the interior angle in a regular pentagon is 108◦. The triangle ABC is isosceles with ∠ABC = 108◦, so

∠BAH = ∠BAC = 1
2 (180◦ − 108◦) = 36◦.

Since ABH is a right-angled triangle with the right angle at vertex B,

α = ∠AHB = 180◦ − 90◦ − 36◦ = 54◦.

Problem 5. A bus stop is served by three bus lines A, B, and C, which leave the stop in intervals of 12, 10, and 8
minutes, respectively. When Brian walked past the stop, he noticed that the three buses of the three lines had left the
stop simultaneously. After how many minutes from that point will that happen again for the first time?

Result. 120

Solution. The sought number of minutes has to be a multiple of all three periods, and since we are looking for the
least such number, the answer is the least common multiple of 12, 10, and 8, which is 120.
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Problem 6. The rhombus flower grows according to the following pattern: In the middle there is a square blossom
with two diagonals of length 1. In the first step the horizontal diagonal is doubled creating a new quadrilateral. In
the next step the vertical diagonal is doubled and again a new quadrilateral blossom is generated. This procedure
is continued until there is a flower with five quadrilateral blossoms. Find the perimeter of the outer (i.e. the fifth)
blossom.

Result. 8
√

2

Solution. The fifth blossom is a square with diagonals of length 4, hence the length of its side is 2
√

2 and the perimeter
equals 8

√
2.

Problem 7. A botanist planted two plants, P1 and P2, of the same species and measured their heights. After a week,
during which the plants had grown up by the same percentage, he measured again and noticed that P1 was as big as
P2 had been a week before and P2 was by 44% bigger than P1 had been a week before. By what percentage did the
plants grow during the week?

Result. 20%

Solution. Let us denote by P1 and P2 the original heights of the plants. Since they both grew by the same percentage
during the week, their new heights are kP1 and kP2, respectively, for some real number k > 1 such that (k − 1) · 100%
is the sought percentage. Then the measurements imply

kP1 = P2,

kP2

P1
= 1.44.

Substituting for P2 in the second equation and cancelling P1 in the fraction yields k2 = 1.44, so k = 1.2, meaning that
the plants grew up by 20%.

Problem 8. How many parallelograms are there in the picture?

Result. 15

Solution. For each of the three vertices of the large triangle, there are three rhombi “pointing” in direction of the
vertex and two 1 × 2 parallelograms sharing that vertex with the triangle. The picture shows these two types of
parallelograms for the top vertex.

No other types of parallelograms are present in the picture, so in total there are 3 · (2 + 3) = 15 parallelograms.
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Problem 9. A bus company offers buses for 27 or 36 passengers. A tour group consisting of 505 tourists wants to
travel with buses of that company. These buses have been selected by the company so that the total number N of
empty seats in the buses is as small as possible. Determine N .

Result. 8

Solution. We are looking for the smallest number s ≥ 505 of the form s = 27x+ 36y, where x and y stand for the
numbers of buses of the first and the second type, respectively. Since the greatest common divisor of 27 and 36 is 9, s
has to be a multiple of 9. The smallest multiple of 9 which is greater or equal to 505 is 513 and since 513 = 27 ·3+36 ·12,
we conclude that the number of empty seats is 513− 505 = 8.

Problem 10. A fan of animals bought two identical pictures of a wolf and four identical pictures of a fox. He wants
to hang them next to each other on six nails on a wall in his living room. Moreover, he wants to change their order
every day in such a way that the resulting sequence looks different from the sequences in all the preceding days. Finally,
he does not want the two pictures of a wolf to hang next to each other. What is the highest number of days for which
he can do it?

Result. 10

Solution. In other words, we ask for the number of distinct sequences of the pictures not having the two wolves next
to each other. The left-hand wolf can be hung on positions 1, 2, 3, and 4 out of 6, and for each of these positions, the
right-hand wolf can be hung to the following positions:

1 : 3, 4, 5, 6

2 : 4, 5, 6

3 : 5, 6

4 : 6,

so there are 10 such sequences in total.

Problem 11. A cylinder of height 18 cm and circumference 8 cm has a string tightly wound around it three times,
starting at the bottom of the cylinder and ending at the top in the point precisely above the starting point. What is
the length of the string in cm?

Result. 30

Solution. Unfolding the cylinder, we see that during each turn around the cylinder, the string has risen by 6 cm while
advancing by the circumference 8 cm in the horizontal direction. By the Pythagorean theorem, the segment of the
string corresponding to one turn is √

62 + 82 = 10 cm

long. Since there are three turns, we conclude that the total length of the string is 30 cm.

Problem 12. A correctly working calculator displays digits in the following way:

Adam’s calculator fell out of a window and now it shows only the horizontal segments. To verify that the calculator
still computes correctly, Adam performed the following calculation:

What is the sum of all digits appearing in this calculation?

Result. 33
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Solution. The last two digits must be zeroes. Furthermore, the first digit of the first factor is 4 and the first digit
of the second factor is 7. Since the product is divisible by 100 and consequently by 25, one of the factors has to be
divisible by 25 or both factors by 5. There is no two-digit multiple of 25 starting with 4, hence the second factor has to
be divisible by 5 and since it cannot end with 0, it equals 75. Moreover, since the product is divisible by 4, the first
factor must be divisible by 4 and so it is 48. We have 48× 75 = 3600, where the sum of all digits present is 33.

Problem 13. Ed had to add up two numbers, but he accidentally wrote an additional digit at the end of one number.
As a result he got the sum of 44444 instead of 12345. What was the smaller of the two numbers that Ed originally
wanted to add up?

Result. 3566

Solution. Let x and y be the two numbers and c a digit that Ed wrote to (say) the number x. Then we have

x+ y = 12345 and (10x+ c) + y = 44444,

therefore
9x+ c = 32099.

It follows that c has to be 5 since 32099− c has to be divisible by 9. We conclude that x = 3566 and y = 8779.

Problem 14. Peter is given 27 standard dice and asked to glue them together into a larger 3× 3× 3 cube, so that
the adjacent faces (i.e. the faces glued together) have the same number of dots. What is the maximal number of dots
that Peter can leave visible on the outside of his 3× 3× 3 cube?

Note: Two views of the standard dice are shown below. The faces are arranged so that opposite sides add to 7.

•
•

•
• ••

•
•

•
• ••

•
•
•
••• •••

Result. 189

Solution. The key observation is that the dots on opposite faces on the large cube always add up to 7, as shown in
the left-hand figure below. The large cube has 27 pairs of opposite faces, so no matter how Peter arranges his dice, the
total number of dots showing must be 27 · 7 = 189. One possible arrangement Peter can use is shown in the right-hand
figure below.

x

7−
x
↘

1
1

11
1

11
1

1

2
2

2

5
5

5

2
2

2

3
4

3

4
3

4

3
4

3

Problem 15. Antonia drew a small X-pentomino made of 5 congruent squares. Then she drew two perpendicular
diagonals of this pentomino with dotted lines. Finally she constructed a bigger X-pentomino with some of the sides
lying on the diagonals of the small pentomino as in the figure. Find the ratio of the area of Antonia’s big pentomino to
the area of the small one.

Result. 5 : 2.
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Solution. The diagonals divide the small X-pentomino into four congruent pieces. Furthermore, two such pieces can
be glued together to form one square of the larger pentomino, as the picture shows. Thus the large pentomino can be
divided into ten such pieces and the sought ratio of areas is 10 : 4 = 5 : 2.

Problem 16. How many palindromes between 103 and 107 have an even sum of digits?

Note: A palindrome is a number which stays the same when the order of its digits is reversed, e.g. 12321 is a palindrome.

Result. 5940

Solution. All numbers between 103 and 104 have an even number of digits, hence the sum of digits of every such
palindrome is even. Moreover, the palindromes from this range are exactly the numbers of the form abba, where a, b
are any digits, a non-zero, which shows that there are 90 palindromes in that range. In a similar way we infer that
there are precisely 900 palindromes between 105 and 106 and the sum of digits of each of them is even.

The palindromes between 104 and 105 are of the form abcba for a, b, c digits, a non-zero, and the sum of their digits
is clearly even if and only if c is even. Hence there are 9 options for a, 10 for b, and 5 for c, which gives 9 · 10 · 5 = 450
sought palindromes in the given range. A similar argument applies to the range from 106 to 107, showing that it
contains 4500 palindromes the sum of whose digits is even.

We conclude that out of all palindromes between 103 and 107, 90 + 900 + 450 + 4500 = 5940 have an even sum of
digits.

Problem 17. A women’s choir consists of sixty singers: twenty sopranos, twenty mezzo-sopranos, and twenty altos.
Moreover, six singers in each voice are very skilled, so they are able to sing any of the parts if necessary; the rest of the
singers can sing their part only. What is the highest number S such that whenever S of the singers fall sick and cannot
sing, the remaining singers can rearrange themselves to form a choir with at least ten singers in each voice?

Result. 22

Solution. If, for example, all the altos together with three other “skilled” singers fall sick, then there are only nine
skilled singer remaining, so there is no way to have ten alto singers. Therefore S < 23.

On the other hand, observe that if some of the singers fall sick, the situation can only get worse if the sick ones are
the “skilled” ones instead of the “ordinary” ones. Therefore, if 22 singers fall sick, we can assume that 18 of them are
the skilled ones, so only four “ordinary” singers fall sick and it is immediate that at least ten singers remain in each
voice. This shows that S ≥ 22 and consequently, S = 22.

Problem 18. A rectangle with sides of length 3 and 4 is inscribed into a circle. Moreover, four half-circles are glued
to its sides from outside as in the picture. What is the area of the shaded region, which consists of points of the
half-circles not lying inside the circle?

Result. 12

Solution. Using the Pythagorean theorem, we find that the length of a diagonal of the rectangle is√
32 + 42 = 5.

This diagonal is the diameter of the circumscribed circle, the area of which therefore equals π(5/2)2. Moreover, the
outer half-circles have radii 4/2 and 3/2, respectively, so the total area of the semicircles is

2 · 12π
(
3
2

)2
+ 2 · 12π

(
4
2

)2
= π

(
5
2

)2
.
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Consider the whole region formed by the semi-circles and the rectangle; its area is

12 + π
(
5
2

)2
.

The shaded region is obtained by removing the circumscribed circle from this all-encompassing region, so its area
equals 12.

Alternatively, we can argue as follows. The Pythagorean theorem gives relation of squares raised above three sides
of a right triangle. The same relation holds for half-circles, which we apply to both halves of the given rectangle
(divided by a diagonal). Straightforward observation then gives that any two neighbouring grey areas have the sum of
half of the rectangle. Therefore the total grey area is equal to that of the rectangle, which is 3 · 4 = 12.

Problem 19. Find the largest three-digit prime number p1 such that the sum of all digits of p1 is a two-digit prime
p2 and the sum of the digits of p2 is a one-digit prime p3.

Result. 977

Solution. The sum of the digits of a three-digit number is at most 9 + 9 + 9 = 27. There are five two-digit primes not
greater than 27, namely 11, 13, 17, 19, and 23. The sums of the digits of these primes are 2, 4, 8, 10, 5, respectively.
Therefore, p2 = 11 or p2 = 23 are the only possibilities. The largest three-digit prime number with the digit sum of 23
is 977. Since 977 > 911, which is the largest three-digit prime having its digit sum equal to 11, the sought number is
977.

Problem 20. In triangle ABC satisfying AB = AC, there is a side axis which meets one of the altitudes in a single
point lying on the perimeter of ABC. Determine all possible sizes of angle ACB in degrees.

Result. 45◦, 67.5◦

Solution. Let us denote the intersection point by X and the centre of AC by F . Observe that the altitude going
through X must be the one corresponding to the same side as X belongs to. We now examine all possible locations of
X.

If X lies on the base BC, it must be the intersection of the altitude from A and one of the side axes. From symmetry
of triangle ABC we infer that this altitude coincides with the axis of BC, so the single-point intersection has to be
with one of the remaining axes. The symmetry then implies that it actually intersects the axes of both AB and AC in
a single point.

A

B X C

F

Since FX is the axis of AC, triangle AXC is isosceles. Moreover, we have ∠AXC = 90◦ and so ∠ACB = ∠ACX = 45◦.
If X lies on AB, then it must be the intersection of the altitude from C and the axis of AC.

B C

X

A

F

As in the previous case, triangle AXC is isosceles and right-angled with right angle at X, implying that ∠BAC =
∠XAC = 45◦. Therefore,

∠ACB = 1
2 (180◦ − ∠BAC) = 67.5◦

in this case. The case when X lies on AC is completely symmetrical.
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Problem 21. Find the sum of all positive divisors of 3599.

Note: Divisors include 1 and 3599.

Result. 3720

Solution. We have
3599 = 3600− 1 = 602 − 1 = (60 + 1)(60− 1) = 59 · 61.

It is easy to see that both 59 and 61 are prime numbers, therefore the answer is 1 + 59 + 61 + 3599 = 3720.

Problem 22. Sisters Dolly, Holly, and Molly made a campfire and roasted sausages. Dolly bought 17 sausages, Holly
bought 11, and Molly bought none. When they had eaten all of them, they decided to share the costs equally. How
much money should Dolly get, if Molly paid $28 to her sisters to get rid of her debt?

Result. 23

Solution. Molly paid exactly one third of the total costs, that is, all the sausages together costed 28 · 3 = 84 dollars.
Dolly paid for 17 sausages out of 28, that is 84 · 17/28 = 51 dollars. Since the sisters decided to share the costs equally,
she should have paid only 28 dollars. Thus she should get 51− 28 = 23 dollars.

Problem 23. The legs of a right-angled triangle have lengths 11 and 23. A square of side length t has two of its
sides lying on the legs of the triangle and one vertex on its hypotenuse as in the picture. Find t.

11

t

23

Result. 253
34

Solution. The gray triangle in the picture is right-angled and shares one angle with the large triangle, hence these two
triangles are similar.

t

23− t

The ratio of lengths of the legs has to be the same for the two triangles, thus we obtain the equation

23− t
t

=
23

11

with the solution t = 253/34.

Problem 24. Find the smallest positive integer n for which 11 · 19 · n is equal to a product of three consecutive
integers.

Result. 840

Solution. As 11 and 19 are primes, one of the three consecutive numbers has to be divisible by 11 and one, not
necessarily a different one, by 19. Moreover, since the product is positive, all three numbers have to be positive as well.
That is, we search for small positive multiples of 11 and 19 differing by at most 2. The smallest are 3 · 19 = 57 and
5 · 11 = 55 so we only have to supplement the product by 56 to get 55 · 56 · 57 = 11 · 19 · 840. Therefore, 840 is the
sought number.
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Problem 25. Consider a semi-circle with centre C and diameter AB. A point P on AB satisfies the following. A
laser beam leaves P in a direction perpendicular to AB, bounces off the semicircle at points D and E following the
rule of reflection, that is, ∠PDC = ∠EDC and ∠DEC = ∠BEC, and then it hits the point B. Determine ∠DCP in
degrees.

CA BP

D

E

Result. 36◦

Solution. Let us denote ∠DCP by x. Since D and E both lie on the circle with center C, 4DCE is isosceles with base
DE. The first given equality ∠PDC = ∠EDC implies that 4CDP is congruent to a half of 4CDE (in particular to
4CDM where M is midpoint of DE). Using also the second equality it follows that ∠BCE = ∠ECD = 2∠DCP (= 2x)
and as these three angles form together a straight angle we have x+ 2x+ 2x = 180◦ ⇒ x = ∠DCP = 36◦.

Problem 26. There are 2020 towns labelled 1, 2, 3, . . . , 2020 in a country. The president decided to build a railway
network. To save money, he built tracks only between the pairs of cities labelled a and b, a < b, which satisfied the
following condition: Number b is a multiple of a and there is no c such that a < c < b, c is a multiple of a, and b is a
multiple of c. With how many other cities is the city labelled 42 connected?

Result. 18

Solution. Consider a pair of connected cities. One of them must have one prime more in their prime factorisation.
They cannot have the same primes because that would mean the cities would be the same. On the other hand, they
cannot have two or more primes difference. To prove that, let p, q be not necessarily distinct primes and let cities a
and b = a · p · q be connected. Than a · p divides b, thus it violates the second condition.

City with number 42 has prime factorisation 2 · 3 · 7. That means that cities with lower index number connected to
this city are three, with these prime factorisations: 2 · 3, 2 · 7 and 3 · 7.

The indexes greater than 42 could be written in the form 42 · p for some prime p. The largest such prime satisfying
42 · p < 2020 equals 47, so p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47}. This means there are fifteen more cities
connected to the city labelled 42, that is, eighteen in total.

Problem 27. Marek invented a chess piece called the blitzer. The blitzer can move forward like a rook and backward
like a knight just as shown in the picture. Marek placed it in the middle square of a different chessboard of dimensions
3× 3 and moved the blitzer 2020 times according to the rules. At most how many times could the blitzer have visited
a single square? The initial position of the blitzer does not count as a visit.

Result. 673

Solution. It is clear from the rules that if the blitzer moves from one square to another, it cannot return to the starting
square in the following move. However, it can return to that square in two moves, even on a 3× 3 chessboard, as the
picture shows:

3

2

1

A B C
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Therefore if the blitzer gets to one of the squares A1, A3, C2, it can start “cycling” and reach visit each of these
squares in its every third move.

If the blitzer starts on B2, then its only possible first move is a rook move to B3 and the subsequent options are A1
or C1 via a knight move. Therefore A1 is reachable from B2 using two moves, but the blitzer cannot directly move to
B2 from A1 or C1 to have the cycle of three moves sooner, so we have to use at least two moves to get in such a cycle.
That leaves 2018 moves for cycling the blitzer and since 2018 = 672 · 3 + 2, the blitzer can do 672 cycles. Thus, it visits
A1 673 times.

Problem 28. David raced against a snail on a circuit with start and finish at the same point. They started at the
same time, ran in the same direction and met in the finish. However, the snail was faster, so it completed more laps
than David, who completed only three laps, and therefore the two met 2020 times, including the meeting at the start
and in the finish. The following day, they ran the same race, but David changed the direction in which he ran. Their
speeds were the same as the day before. How many times did they meet in the second race?

Result. 2026

Solution. Let us assume that the snail completed exactly n laps during the race. That is, the speed of David was 3
and that of snail n (in laps per race). Then the rate of change of the margin, i.e. the oriented distance from David to
the snail, was n − 3. Since they met whenever the margin was a natural number, they met n − 3 times, excluding
the beginning. Thus n = 2022. When they were running in opposite directions, the rate of change of their oriented
distance was n+ 3 = 2025, so they met 2025 times excluding the start, i.e. 2026 times in total.

Problem 29. Noah plays a game, in which his character collects three types of items: support, attack and defence.
Each of them can be of a level from 1 to 10. It is possible to combine two different items of the same level to obtain an
item of the third type of one higher level. For example, combining a defence item of level 3 with a support item of level
3 results in an attack item of level 4. How many attack items of level 1 must Noah collect in order to obtain an attack
item of level 10 provided he has an unlimited supply of defence and support items of level 1?

Result. 170

Solution. Let us denote si, di, ai number of support, defence and attack items of the level i needed to get one attack
item of level 10. We have s10 = d10 = 0, a10 = 1 and according to the rules,

si−1 = di + ai,

di−1 = ai + si,

ai−1 = si + di

for all i ∈ {2, . . . , 10}. Using these rules, one can fill in a 10× 3 table so that with the exception of the top row (0, 0, 1),
value in every cell is the sum of the two numbers in the row above it, but not in the same column:

0 0 1
1 1 0
1 1 2
3 3 2
5 5 6
11 11 10
21 21 22
43 43 42
85 85 86
171 171 170

Thus the answer is 170.
An alternative approach is to note that since the roles of support and defence items are interchangeable, actually

si = di. It is also easy to prove by induction that |ai − si| = 1; this holds for i = 10 and

|ai−1 − si−1| = |(si + di)− (ai + di)| = |si − ai| = 1.

Finally, we have
si−1 + di−1 + ai−1 = (di + ai) + (ai + si) + (si + di) = 2(si + di + ai),

so s1 + d1 + a1 = 29 = 512. These observations together imply that s1 = d1 = 171 and a1 = 170.
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Problem 30. Giuseppe bought an ice cream. It had the shape of a ball of radius 4 cm in an ice cream cone. Giuseppe
noticed that the ice cream ball fitted in the cone in the following way: The centre of the ball was precisely 2 cm above
the base of the cone and the cone surface ended exactly where it touched the ball tangentially. What was the volume
of the cone?

Result. 24π

Solution. Let AC = 4 be the radius of the ball, BC the radius of the cone base and BD the cone height as in the
figure below. From the Pythagorean theorem applied to the triangle ABC we get BC2 = AC2 −AB2 = 16− 4 = 12.
From similarity of triangles ABC and CBD we can deduce BD

BC = BC
AB . Therefore the volume is

V =
1

3
πBC2 ·BD =

1

3
πBC2BC

2

AB
=
π · 122

3 · 2 = 24π.

A

BC

D

4
2

Problem 31. Using each of the digits 1, 2, 3, 4, 6, 7, 8, and 9 exactly once, Bob formed two four-digit numbers,
which he subsequently added together. Find the highest possible sum of the digits of the result.

Result. 31

Solution. Let us first recall the basic property of addition: We add the numbers digit-by-digit with the exception that
carries must added properly. That is, we add the four pairs of digits and the carries. Since we are adding only two
numbers, the carries are at most 1.

Let us now denote the two numbers by a and b and the sum of digits of any number n by S(n). Then it holds
that S(a + b) = S(a) + S(b) − 9 · c, where c is the number of non-zero carries. We now compute S(a) + S(b) =
1 + 2 + 3 + 4 + 6 + 7 + 8 + 9 = 40, so the possible values of S(a+ b) are 40, 31, 22, 13 and 4.

It is, however, impossible to achieve 40 since 9 added to any non-zero digit is greater than or equal to 10, while 31
is attainable for instance as follows: 9678 + 4321 = 13999; 1 + 3 + 9 + 9 + 9 = 31. The result thus reads 31.

Problem 32. In a single-elimination tennis tournament, eight players are randomly allocated to the eight free ends
at the bottom of the graph in the picture. Then three rounds are played according to the graph—it is always the
winner of a match who continues to the next round. In our tournament there are two professional players and six
amateurs, one of whom is Bono. Any professional player always beats an amateur and every two professionals or two
amateurs are evenly matched. What is the probability that Bono will play in the final round?
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Result. 1
14

Solution. Let us consider the half of players containing Bono. Bono will play the final if and only if both of the
professional players start in the other half and he beats the other three amateurs in his half.

Let us start with only Bono’s position fixed and assign the two professional players. The probability that both go
to the other half is 4

7 · 36 . Using the fact that all the amateurs are evenly matched, the probability that Bono wins two
matches against them is 1

2 · 12 . The desired probability is therefore 4
7 · 36 · 12 · 12 = 1

14 .

Problem 33. There are numbers

1,
1

2
,

1

3
, . . . ,

1

100
written on the blackboard. In each step, we take two of the numbers, say a and b, erase them and write the number

ab

a+ 2ab+ b

instead of them. This procedure is repeated until there is only one number left on the blackboard. Find all possible
values of that number.

Result. 1
5248

Solution. Notice that when n replaces a and b, we have

1

n
=
a+ 2ab+ b

ab
=

1

a
+

1

b
+ 2.

It follows that the sum of the reciprocals of all numbers on the blackboard increases by two in each step. As there were
99 steps in total, the last number l satisfies the equation

1

l
= 2 · 99 + 1 + 2 + · · ·+ 100 = 198 +

101 · 100

2
= 5248.

Thus the last number is equal to 1
5248 .

Problem 34. Given a triangle ABC of area 1, extend its sides BC, CA, AB to points D, E, and F respectively, as
in the figure, so that BD = 2BC, CE = 3CA and AF = 4AB. Find the area of the triangle DEF .

A

B
C

D

E

F

Result. 18

Solution. Denote by HA and HE the perpendicular projections of A and E, respectively, onto line BC.

A

B

C
D

E

F

HAHE

The right-angled triangles CAHA and CEHE are similar, therefore CE = 3CA implies EHE = 3AHA. From
CD = BD −BC = BC we get that the area of triangle CDE is equal to

1
2 · CD · EHE = 3 · 12 ·BC ·AHA = 3.

A similar argument then shows that the areas of triangles AEF and BFD are 2 · 4 = 8 and 3 · 2 = 6, respectively, so
that the total area is 1 + 3 + 8 + 6 = 18.
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Problem 35. The royal tax collectors have collected three bags containing hundreds of golden coins. Each coin in
the first, the second and the third bag weighs 10, 11 and 12 grams, respectively. Unfortunately, the labels on the bags
got lost. The king has a scale, which shows the weight in grams up to the maximal weight of N ∈ N grams; if the
weight is bigger than N , the scale simply shows N . The king’s intention is to determine which bag contains which type
of coins by taking some coins from the bags and a single weighing. What is the minimum value of N such that he can
always achieve this?

Result. 47

Solution. Let us first denote the numbers of coins from the bags weighted by the king by a, b, and c. First note that
the numbers must be pairwise distinct, for if two of them were equal, the two respective bags would be indistinguishable.
We shall call such triplets admissible. We search for the smallest possible choice of a, b, and c such that a ·k+ b · l+ c ·m
are pairwise distinct numbers for any permutation (k, l,m) of the numbers 10, 11 and 12.

The smallest admissible triplet is a = 0, b = 1 and c = 2. This, however, violates the second condition since
32 = 2 · 10 + 12 = 2 · 11 + 10. The second smallest admissible triplet is a = 0, b = 1, and c = 3, which satisfies the
second condition, since

3 · 10 + 11 = 41, 3 · 10 + 12 = 42,

3 · 11 + 10 = 43, 3 · 11 + 12 = 45,

3 · 12 + 10 = 46, 3 · 12 + 11 = 47.

The scale thus has to measure correctly up to 47 grams.

Problem 36. Emma has decided to go on a pineapple diet. Every day at 1 pm she checks how many pineapples she
has left. If she has at least one, she eats one. If not, she buys one more than she had any day before instead. She
bought her first pineapple on day 1 at 1 pm. How many pineapples did she have on day 2020 at 2 pm?

Result. 59

Solution. Let us denote the number of Emma’s pineapples on day i at 2 pm by s(i). Since the first two zeros appear
on days 2 and 5 and Emma increases every time the number of bought pineapples by one, the distances between two
subsequent zeroes in the sequence s(i) form the sequence 3, 4, 5, . . . . The zeroes are thus located at positions

2 + 3 + 4 + · · ·+ n = 1 + 2 + 3 + 4 + · · ·+ n− 1 =
n(n+ 1)

2
− 1.

Since we want to know where the last zero before 2020 appears, we solve the quadratic equation 1
2x(x+ 1)− 1 = 2020.

It has a negative solution (which is irrelevant) and a positive solution
√
16169
2 − 1

2 lying between 63 and 64. Thus
the last zero is the 62nd and it is at the position 63·64

2 − 1 = 2015. The sequence s(i) then continues as follows:
63, 62, 61, 60, 59, . . . , so the sought number s(2020) equals 59.

Problem 37. Pig farmer Joe has a new pigsty of area 252 m2 for his young pigs. Inside his pigsty he has flexibly
movable dividing walls such that there are 16 rectangular boxes. These dividing walls can only be moved parallel to the
outer walls along the entire length and width of the pigsty. Now he has moved the dividing walls so that some of the
boxes have sizes in m2 as in the picture. As an amateur mathematician, he always takes care that the pig boxes have
sides of positive integer sizes. Find all possible areas of the pig box in the upper right corner containing the question
mark (in m2).

24

18

10

?

30

12

12

Result. 8, 24

Solution. First note that we know the ratio of width of the first and second columns (30 : 10) and of the first and
third columns (18 : 12). We also know the ratio of heights of the first, second and fourth rows (24 : 18 : 30). Moreover,
the reduction of the ratios to the lowest terms produces 3 : 1 : 2 and 4 : 3 : 5 for the columns and rows, respectively.
Knowing that, we can fill in the table with areas of the corresponding cells as in the figure, where the third row and
fourth column are specified only partially with integer parameters x and y to reflect the ratios.

24

18

10

4y

30

12

12

8

6

16

20

3x

3y

5y

x 2x
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The ratio of the height of the second and third row could be expressed comparing the areas in the third column as
12 : 2x or from the fourth columns as 3y : 12, see the shaded rectangle above. These two values must, of course, be the
same, so we write 12 : 2x = 3y : 12, i.e. y = 24/x.

Finally, we compare the total area of the pigsty with the sum of all the boxes to get the equation

96 = 6x+ 12y = 6x+ 12
24

x
,

which could be rewritten to
0 = x2 − 16x+ 48 = (x− 4)(x− 12).

The solution is thus x = 4 or x = 12, which lead to y = 6, ? = 24 and y = 2, ? = 8, respectively.

Problem 38. Daniel and Philip both drew a circle on a piece of paper with a grid made by 1 × 1 squares. Both
circles pass through exactly three grid points. Daniel’s circle has radius 5

4 , Philip’s circle is even smaller. What is the
radius of Philip’s circle?

Result. 5
√
2

6

Solution. Let A,B,C denote the grid points on Philip’s circle. We are given that the radius is less than 5
4 , so the

distance between A and B is at most 5
2 , and therefore, up to a rotation, the relative position of A and B is one of the

four arrangements shown below:

In each case, we can find a line of reflectional symmetry for the circle, and the third grid point C must be placed
either on this line, or in such a way that its reflection across the line is not a fourth grid point. This makes arrangement
1 impossible.

Arrangement 2 is possible, as long as we place C on the line of symmetry. Moreover, we must also position A,C
and B,C in one of the arrangements 2 through 4, up to rotation. This leads us to Philip’s circle:

We still need to find the radius, which we can do algebraically. We introduce a coordinate system so that the points
A,B,C have coordinates (1, 0), (0, 1), and (2, 2). Substituting these (x, y)-values into the general equation of a circle
(x− h)2 + (y − k)2 = r2, we solve for h, k, and r, and arrive at the equation (x− 7

6 )2 + (y − 7
6 )2 = 25

18 .
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Problem 39. Seven imps wear hats of seven distinct colours. A malicious wizard Colorius wants to devise a spell
changing the colours of the hats so that

• the new colour of each hat depends only on its previous colour, not on who wears it or what the other hats look
like,

• after the spell takes effect, all seven original colours are still present, and

• when Colorius casts the same spell two or three times in a row, in neither case will any of the imps wear a hat of
his original colour.

How many such spells can Colorius devise?

Result. 720

Solution. Since all colours remain present after the spell, we infer that the spell is just a permutation of the seven
original colours. Every such permutation can be decomposed into disjoint oriented cycles of colours such that the
permutation simply rotates these cycles. It follows from the third condition in the statement that these cycles cannot
be formed by 2 or 3 colours, but a 1-colour cycle is impossible, too. However, it is impossible to distribute the seven
colours into more than one cycle so that all the cycles contain at least four colours, so the permutation in question is
formed by a single cycle. Finally, there are 6! = 720 such permutations: Fix one of the colours, there are six options to
which colour the spell can change it, for this colour there are five options etc., until the last colour gets changed to the
first one.

Problem 40. Mary has a combination lock—but it is no ordinary lock, as each of its rings has a different number of
numbers on it. The first ring has numbers from 0 to 4, the second one from 0 to 6, the third one from 0 to 10, and
the fourth one from 0 to 9. Mary knows that if she sets the lock rings to show 0, 0, 0, 0 and starts rotating all rings
simultaneously (so that the next combination shown is 1, 1, 1, 1), she will eventually get to a combination which ends
with 5, 1. She also knows that when this happens for the second time, the rings show the combination to unlock the
lock. Help her and find the unlocking combination.

Result. 1, 6, 5, 1

Solution. We are looking for an integer x such that x gives remainders 5 and 1 when divided by 11 and 10, respectively.
Since 10 and 11 are coprime, by the Chinese remainder theorem, there is precisely one such x among the numbers
0, 1, . . . , 109 (let us call it x0) and all the other solutions are obtained by adding multiples of 10 · 11 = 110 to x0. A
possible easy way to find x0 is to list integers of the form 11k + 5 (k an integer) and pick the one ending with 1, which
turns out to be 71. This is the number of rotations needed to be done to get the first combination ending with 5, 1. By
the above, such a combination will come up again after 110 rotations (and not earlier), i.e. 110 + 71 = 181 rotations
from the beginning. Since 181 gives remainders 1 and 6 when divided by 5 and 7, respectively, at that point the lock
will show 1, 6, 5, 1.

Problem 41. In some squares of a 4× 4 table four double-sided mirrors have been placed diagonally. From each of
the sixteen segments on the boundary of the table, a ray of light has been released perpendicularly to the segment.
The ray goes straight and changes its direction by 90◦ every time it hits a mirror. It occurred that exactly four of these
rays had one end on the bottom side of the table and the other on the right side, another four had ends on the right
and the upper side, another four ended on the upper and the left side and finally, four had one end on the left side and
one on the bottom side. For how many different configurations of the four mirrors does this happen? (The picture
shows one such configuration with some of the rays.)

Result. 144

Solution. Since there are only four mirrors and each ray has to turn at some point, every row and every column has
to contain exactly one mirror. This can be achieved in 4! = 24 different ways—we choose the column for the first row
in 4 ways, then the column for the second in 3 ways and so on. Due to the restrictions on the number of rays going in
each direction, we know that there must be two mirrors of each type. Hence having chosen the squares to which the
mirrors are to be placed, we have

(
4
2

)
= 6 ways to choose the orientation. Finally, it is not hard to see that every such

configuration has the desired properties, hence there are 24 · 6 = 144 such configurations.
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Problem 42. Let x1 = 2020 and let xn be equal to xn−1 multiplied by the smallest prime p, which is not a divisor
of xn−1, and divided by all primes smaller than p. Find the number of different prime divisors of x2020.

Result. 9

Solution. We see that x1 = 2 · 2 · 5 · 101 and x2 = 2 · 3 · 5 · 101. It is easy to see that when a term of the sequence
is not divisible by a square of a prime number, all the subsequent terms have this property, too. Therefore, from x2
on we can represent every term xn as a binary number bn, whose k-th digit (from the right) is 1 if and only if xn is
divisible by the k-th prime number. Next, observe that according to the definition of the sequence, bn+1 = bn + 1 for
all n ≥ 2. We have

b2 = 100000000000000000000001112

and
b2020 = b2 + 111111000102︸ ︷︷ ︸

=2018

= 100000000000000111111010012.

From the definition of bn, the number of different prime divisors of x2020 is just the number of ones in b2020, which is 9.

Problem 43. The medians of triangle ABC dissect it into six sub-triangles. The centroids of these sub-triangles are
vertices of hexagon DEFGHI. Find the area ratio between the hexagon DEFGHI and the triangle ABC.

Result. 13
36

Solution. The following figure represents the situation containing all the relevant points: the centroid S of triangle
4ABC, the midpoints Ma, Mb, Mc of the sides of 4ABC, the centroids D, E, F , G, H, I of the sub-triangles, the
midpoints D′, E′, . . . , I ′ of the line segments MbA,AMc, . . . , CMb, respectively.

A B

C

Mc

Ma
Mb

I ′ H ′

D′

E′ F ′

G′

E F

G

HI

D

S

Since AE′ = 1
4AB and AD′ = 1

4AC, triangle 4AE′D′ is a homothetic transformation of 4ABC with center A and
scaling factor 1

4 . Therefore, the area [AE′D′] is 1
16 [ABC]. Likewise, we have [BG′F ′] = [CI ′H ′] = 1

16 [ABC]. Therefore,
the area of hexagon D′E′F ′G′H ′I ′ is 13

16 [ABC]. Furthermore, the homothetic transformation with center S and scaling
factor 3

2 maps hexagon DEFGHI to hexagon D′E′F ′G′H ′I ′ and we obtain the area of hexagon DEFGHI as

4

9
· 13

16
[ABC] =

13

36
[ABC].

As a consequence, the area ratio sought is 13
36 .

Problem 44. Let a1, a2, a3, . . . be a sequence of real numbers such that am+1 = m(−1)m+1 − 2am for all positive
integers m and a1 = a2020. Find the value of a1 + a2 + · · ·+ a2019.

Result. 1010
3

Solution. Adding up the equations for m = 1, . . . , 2019 we obtain

(a2 + a3 + · · ·+ a2020) = (1− 2 + 3− · · ·+ 2019)− 2(a1 + a2 + · · ·+ a2019).

Using a1 = a2020, we can rearrange this as follows:

3(a1+a2+ · · ·+a2019) = 1−2+3−· · ·+2019 = (1−2)+(3−4)+ · · ·+(2017−2018)+2019 = (−1) ·1009+2019 = 1010.
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Thus
a1 + a2 + · · ·+ a2019 = 1010/3.

Note that such a sequence of real numbers indeed exists: Given a1, the rest of the sequence is determined by the
equation in the statement. One can therefore express a2020 in terms of a1 only and the condition a1 = a2020 then
translates to a linear equation in a1; it is not difficult to see that this equation has a solution.

Problem 45. Sandra holds five identical strings in her hand so that each string has one end on each side of her hand.
She asks Will to tie pairs of ends on either side at random until only one end on each side is remaining. At most two
ends of strings can be tied together. How likely are the strings to fit together in a single long thread?

Result. 8/15

Solution. Assume that the strings, which we label A, B, C, D, and E are tied on one side of the hand so that A has a
free end, B is tied to C and D is tied to E. Observe that under such circumstances, we obtain one thread if and only if
(on the other side) we tie A to one of B, C, D, E (4 options) and subsequently tie the remaining free end of the pair
to a string of the other pair (2 options)—for example, if A is tied to B, then we tie C with D or E. Thus there are
4 · 2 = 8 options.

The total number of ways to tie the knots on the other side is 15: First we choose the free end (5 options) and the
rest is determined by pairing one particular end with one of the three remaining ends (3 options). We conclude that
the probability of forming a single thread is 8/15.

Problem 46. Call a number a 2-prime if any pair of its consecutive digits forms a different two digit prime number.
For example, 237 is 2-prime, while 136 and 1313 are not. Find the largest 2-prime number.

Result. 619737131179

Solution. Let us consider an oriented graph on 4 vertices labelled 1, 3, 7 and 9 where two digits are connected with an
arrow if and only if the associated two-digit number is a prime. Note that there is a loop at vertex 1.

3

1

9 7

Assume for the moment that there is a walk on the graph moving along the arrows and using every arrow exactly once.
Then the largest 2-prime can be obtained by putting 6 or 8 in front of the sequence of digits visited by one of such
walks. Indeed, it follows from the definition of 2-prime that all its digits except for the first one must be taken from the
set {1, 3, 7, 9} and no arrow can be used twice. Thus no 2-prime can have more digits than the number of arrows in our
graph plus two (one for the first digit and one because we are counting digits), i.e. 12. Also, the first digit cannot be 9
or 7 (it would repeat one of the arrows) and since 61, 83, 87 and 89 are prime numbers, we do not need smaller digits.

Now we find the walk with the above-mentioned properties which produces the largest possible number. Note that
on one hand, there is one more arrow entering vertex 9 than leaving it while, on the other hand, one more arrow leaving
vertex 1 than entering it. The other two vertices are “balanced” in this sense. It follows that our walk must start in 1
and end in 9. From 1 we move to 9 as it is the largest possible neighbour, then we continue to 7 for the same reason,
then we cannot return to 9 (it would terminate the sequence) so we rather move to 3, then back to 7 etc. By this
sort of greedy algorithm we end up with 19737131179 and as 81 is not prime, we conclude that the largest 2-prime is
619737131179.

Problem 47. Let O be the circumcenter of triangle ABC. Let further points D and E lie on the segments AB and
AC, respectively, so that O is the midpoint of DE. If AD = 8, BD = 3, and AO = 7, determine the length of CE.

Result. 4
√
21
7

Solution. Consider a reflection with respect to the circumcenter O and denote the respective images of points by
adding a prime. We observe that points A′ and B′ lie on the circumcircle of 4ABC and D′ = E (i.e. E′ = D). The
Pythagorean theorem in the right-angled triangle AA′B′ (note that AA′ is a diameter of the circumcircle) yields

(AB′)2 = (AA′)2 − (A′B′)2 = 142 −AB2 = 142 − 112 = 75.
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Since ∠AB′E = ∠A′BD = 90◦, the Pythagorean theorem in 4AB′E yields

AE =
√

(AB′)2 +BD2 =
√

75 + 9 = 2
√

21.

Since E (the image of D) lies on A′B′ (the image of AB) and since the quadrilateral AB′CA′ is cyclic, it follows that
4AB′E ∼ 4A′CE. Hence

CE

A′E
=
B′E

AE

and we conclude that

CE = AD · BD
AE

= 8 · 3

2
√

21
=

4
√

21

7
.

A

B C

O
D=E′

E=D′

B′

A′

Alternative solution: The power of point D with respect to the circumcircle of 4ABC with radius r = AO equals

−3 · 8 = −DB ·DA = OD2 − r2 ⇒ OE = OD =
√

49− 24 = 5

(the minus sign is present due to the fact that D lies inside the circle). The Law of Cosines in 4ADO yields

82 = 52 + 72 − 2 · 5 · 7cos(∠AOD).

Since cos(∠AOE) = cos(180◦ − ∠AOD) = −cos(∠AOD) = − 1
7 , the same theorem for 4AOE then yields

AE2 = 72 + 52 − 2 · 5 · 7cos(∠AOE) = 84⇒ AE =
√

84 = 2
√

21.

Similarly as above, from power of point E with respect to the circumcircle of 4ABC we obtain

−2
√

21 · EC = 52 − 72 ⇒ EC =
24

2
√

21
=

4
√

21

7
.

Problem 48. Rectangle of dimensions 7× 24 is divided into squares 1× 1. One of its diagonals cuts triangles from
some of the squares. Find the sum of perimeters of all these triangles.

Result. 56
3 = 18 2

3

Solution. Let 24 be the width and 7 the height of the rectangle. The diagonal going from the lower left to the upper
right corner has a slope of 7

24 . When it passes through a square, it cuts off a triangle if and only if it crosses a horizontal
side that separates two squares. Since the slope is constant, we can rearrange the line segments of the two triangles that
are cut off from the two squares into one big right triangle of width 1. Then the legs are 1 and 7

24 and the hypotenuse
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is

√
1 +

(
7
24

)2
= 25

24 long.

7
24

1

The sum of the perimeters of these two triangles is thus 56
24 . The diagonal crosses a horizontal side exactly six times,

plus two big right triangles of the above dimensions are cut off from the first and last squares that the diagonal passes.
So the total sum of the perimeters is 8 · 5624 = 56

3 .

Problem 49. Let us call a positive integer n elevating if it is possible to get from each floor of an 8787-storey building
to any other when it is only allowed to go 2020 floors down or n floors up. Find the largest elevating number.

Note: A k-storey building has k floors above the ground level and a ground floor.

Result. 6763

Solution. Firstly, in order to be able to move at all from floor 2019, we must have 2019 + n ≤ 8787 ⇒ n ≤ 6768.
Secondly, the condition d := gcd(2020, n) = 1 is necessary, as we can move between floors a and b only if d | a − b.
Bearing in mind that 2020 = 22 · 5 · 101, we can eliminate some candidates for the largest n: 6768 divisible by 2, 6767
divisible by 101, 6766 divisible by 2, 6765 divisible by 5, 6764 divisible by 2 and finally gcd(6763, 2020) = 1.

It remains to prove that 6763 is elevating. Using the Euclidean algorithm (or Bézout’s identity) we can find integers
x, y such that 6763x− 2020y = 1 and we can assume that x, y are even non-negative since adding 2020 to x and 6763
to y preserves the equality. Starting in floor 0 ≤ f ≤ 8786, we claim that is possible to make a sequence of x moves up
and y moves down in such order that we stay in the building and end in floor f + 1. Indeed, as 2020 + 6763 ≤ 8787, we
can always move in at least one direction. Furthermore, if we used all of the steps down (resp. up), we must be below
(resp. above) floor f + 1 and making the remaining steps up (resp. down) brings us to floor f + 1. Similarly it can be
shown that we can move one floor down from any floor 1 ≤ f ≤ 8787. We conclude that 6763 is the largest elevating
number.

Problem 50. In the cryptogram
R E D

+ B L U E
+ G R E E N

= B R O W N

different letters represent different digits. None of the four numbers may start with zero. Furthermore, we know that
BLUE is a perfect square. Find the five-digit number BROWN .

Result. 85230

Solution. We number the columns from left to right by 1 up to 5 and denote the carries of the respective columns by
c1, . . . , c5. Observe that c1 = 0 and 0 ≤ ci ≤ 2 for i = 2, . . . , 5: Indeed, one cannot get more than 29 by adding three
digits and a carry of size at most 2 and thus the last inequality follows from an inductive argument. Further note that
c2 ≤ 1—as there are two different digits summed up in the second column and c3 ≤ 2—and c2 6= 0 due to the first
column, so c2 = 1 and G+ 1 = B. From the fifth column we get D+E = 10, since D and E cannot be both zeroes, and
c5 = 1. Since B+R+ c3 = c2 · 10 +R, either B = 9 or B = 8. Therefore BLUE is the square of an integer n satisfying
90 ≤ n ≤ 99 and has four different digits. Eliminating the squares with coincident digits, we are left with 8649, 9025,
9216, 9604, and 9801 as possible values for BLUE. From D + E = 10 we can eliminate 9025, since this would lead to
D = E (= 5). Furthermore, 9801 is impossible due to B = D (= 9) and 9604 due to L = D (= 6). With the help from
the fourth column we can eliminate 9216, because this would lead to D = 4 and E + U + E + 1 = 6 + 1 + 6 + 1 = 14
giving W = 4, which is a contradiction with D = 4. Therefore the only possible value of BLUE is 8649.

From B = 8, L = 6, U = 4, E = 9 we easily get D = 1, W = 3, and G = 7 and the carries c3 = c4 = 2. The third
column now gives R+ L+ E + c4 = c3 · 10 +O, which can be simplified to R+ 17 = 20 +O and this is possible with
R = 5 and O = 2 only. As a consequence, we finally get N = 0 and the cryptogram has the unique solution

5 9 1
+ 8 6 4 9
+ 7 5 9 9 0

= 8 5 2 3 0
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Problem 51. Find the smallest positive integer k > 1 such that there is no positive k-digit integer n with every digit
odd and S(S(n)) = 2, where S(x) denotes the sum of digits of x.

Result. 103

Solution. Firstly observe that S(m) = 2 for an odd integer m if and only if m = 10l + 1 for some positive integer l. If
k = 103, then S(n) is necessarily odd for any k-digit n with all digits odd, hence for S(S(n)) = 2 to hold, S(n) has to
be of the form above. However,

101 < 103 · 1 ≤ S(n) ≤ 103 · 9 = 927 < 1001

for every n with 103 digits. Therefore k = 103 satisfies the condition from the statement.
We will now prove that for odd k < 103, there exists n as described in the statement. It is easy to see that S(n)

can attain any odd value greater or equal to k and less or equal to 9k. If 1 < k ≤ 11, then 9k ≥ 18 > 11, so S(n) can
be equal to 11 and consequently, there exists n such that S(S(n)) = 2. If 101 ≥ k > 11, then 9k ≥ 9 · 13 = 117 > 101,
so S(n) can be equal to 101 and again S(S(n)) = 2. So k > 101.

If k < 103 is even, the reasoning is basically the same, the only difference is that S(n) is even. For k = 2 we can use
n = 11. If 2 < k ≤ 20, then 9k > 20, so we can find n with S(n) equal to 20. If 103 > k > 20, then 9k > 180 > 110, so
S(n) can be equal to 110.

This shows that 103 is the sought smallest number having the desired property.

Problem 52. Martin bought a chessboard, which was formed by a rectangle consisting of 1010× 2020 squares, out of
which a smaller rectangle had been removed as in the figure below. He placed a bug on every square of the chessboard.
However, some of the bugs had a cough. To make things worse, the cough was very infectious: Every bug sitting on
a square neighbouring at least two squares with coughy bugs got the cough as well. (We say that two squares are
neighbouring if they share a side.) Determine the least possible number of bugs that could infect all others. The bugs
did not move.

200 200

200

200

2020

1010

Result. 2630

Solution. Observe that when a bug is infected by the described procedure, the total perimeter of the “contaminated”
region does not increase. Therefore, there had to be at least P/4 infectious bugs initially, where P is the perimeter of
the “O” shape. We can easily compute that P = 2(2020 + 1010 + (2020− 400) + (1010− 400)) = 10520 and the picture
shows an arrangement of P/4 = 2630 coughy bugs that would infect all others.

.

.

.
.
.
.

.. .

.. .

Problem 53. A positive integer has 25! distinct positive divisors. Find at most how many of them may be the 5th
powers of a prime number.

Note: The symbol n! denotes the product of all positive integers less than or equal to n.

Result. 27

Solution. A number pa1
1 p

a2
2 · · · pak

k where pi are distinct primes has (a1 + 1)(a2 + 1) · · · (ak + 1) positive divisors. So
we see that the maximal number of 5th powers of a prime dividing our number is equal to the maximal number of
factors ≥ 6 in some factorisation of 25!. In order to maximise this number, we consider the prime factorisation

25! = 222 · 310 · 56 · 73 · 112 · 13 · 17 · 19 · 23,

leave primes larger then 5 and combine 5’s and 3’s each with a 2 and finally write 26 as 82 to get the maximal number 27.
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Problem 54. Positive real numbers x, y, z satisfy

x2 + xy + y2 = 1,

y2 + yz + z2 = 2,

z2 + zx+ x2 = 3.

Find the value of xy + yz + zx.

Result. 2
√

2/3 = 2
3

√
6

Solution. By adding the first and the third equation and subtracting twice the second one, we obtain

(2x− y − z)(x+ y + z) = 0

and since x, y, z are positive, 2x = y + z. Put y = x− δ, z = x+ δ and plug in to the equations from the statement to
obtain

3x2 − 3xδ + δ2 = 1,

3x2 + δ2 = 2,

3x2 + 3xδ + δ2 = 3.

It follows that xδ = 1/3 and plugging into the second new equation gives a quadratic equation with solutions

δ2 = 1± 1
3

√
6.

We are asked to compute 3x2 − δ2 = 2− 2δ2 and since the result has to be positive, the only possibility is 2
√

2/3.

Alternative solution: Pick a point P in the plane and draw line segments PA, PB and PC of lengths x, y and z
respectively, so that ∠APB = ∠BPC = ∠CPA = 120◦. Since cos(120◦) = − 1

2 , the given equations and the Law of

Cosines yield AB = 1, BC =
√

2 and AC =
√

3 and thus ABC is a right triangle with area S =
√
2
2 . Note that this

area can be computed also using the three triangles sharing vertex P as follows: S = 1
2 sin(120◦)(xy + yz + zx). Recall

that sin(120◦) =
√
3
2 and conclude that xy + yz + zx = 2

√
6

3 .

Problem 55. Let I and O be respectively the incenter and the circumcenter of triangle ABC with the properties
AB = 495, AC = 977 and ∠AIO = 90◦. Determine the length of BC.

Result. 736

Solution. Consider a homothety with center A and ratio 2 and mark respective images of points by adding a prime.
Then AO′ is clearly the diameter of the circumcircle of 4ABC and as ∠AIO = 90◦, I ′ also lies on the circumcircle. It
follows that it is the midpoint of arc BC not containing A. It is well known that this point (from now on denoted by
Š) satisfies ŠI = ŠC and basic angle chasing reveals ∠BCŠ = ∠BAŠ = ∠CAŠ. Let D denote the intersection of AŠ
and BC. Then 4DŠC ∼ 4CŠA and hence

ŠD

ŠI
=
DŠ

ŠC
=
CŠ

ŠA
=
ŠI

ŠA
=

1

2

is the inverted ratio of the homothety. It follows that [BCI] = 1
3 [ABC], where [XY Z] denotes the area of triangle

XY Z. This can be rewritten using the radius r of the incircle of 4ABC as

1

2
r ·BC =

1

6
r(AB +BC + CA)

and so

BC =
AB +AC

2
=

495 + 977

2
= 736.

O I

A

B C

I ′ = Š
O′

D
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Problem 56. Find all triples (a, b, c) of positive integers satisfying the equation 3abc = 2a+ 5b+ 7c.

Result. (1, 16, 2), (2, 11, 1), (12, 1, 1)

Solution. Dividing the equation by the (positive) number abc yields

3 =
2

bc
+

5

ca
+

7

ab
.

If all three unknowns are larger than one and at least one of them is larger than two, then the right-hand side is at most

2

2 · 3 +
5

2 · 3 +
7

2 · 2 =
35

12
< 3,

so there is no solution under these assumptions. One can easily verify that a = b = c = 2 does not yield a solution
either. Therefore at least one of a, b, c is equal to 1.

If a = 1, then the original equation reads
3bc = 2 + 5b+ 7c,

which, after multiplying by 3 and rearranging, can be factorised to

(3b− 7)(3c− 5) = 41.

Since both factors have to be positive divisors of prime number 41, which gives remainder 2 when divided by 3, we
have only one solution, namely b = 16 and c = 2.

If b = 1, we obtain
3ac = 2a+ 5 + 7c

and a similar step yields
(3a− 7)(3c− 2) = 29,

leading to a = 12 and c = 1 using the same divisibility argument as before.
Finally, the option c = 1 produces the equation

(3a− 5)(3b− 2) = 31

with solutions a = 12, b = 1 and a = 2, b = 11, the former being already found in the previous step.
Summing up, there are exactly three solutions: (1, 16, 2), (2, 11, 1) and (12, 1, 1).

Problem 57. At a party, every guest is a friend of exactly fourteen other guests (not including him or her). Every
two friends have exactly six other attending friends in common, whereas every pair of non-friends has only two friends
in common. How many guests are at the party?

Result. 64

Solution. Pick a guest x together with all his or her friends and call this group of 15 people H. Let y be a member of
H different from x, we claim that y has precisely 7 friends outside of H: Out of 14 friends of y, one is x and further six
are common friends of x and y, all included in H. Therefore there are altogether c = 14 · 7 = 98 pairs (y, z), where y is
a member of H different from x and z is a friend of y outside H. However, the number c can also be computed as
follows: Each guest z outside H has precisely two friends in H, because x is not a friend of z by the definition of H
and both the common friends of x and z are in H. In other words, c is twice the number of guests outside H, therefore
there are 98/2 = 49 guests not in H. Since H has 15 members, we conclude that the party is attended by 15 + 49 = 64
people.

Let us note that such a configuration of relations between 64 guests is indeed possible: Put the guests into the cells
of an 8× 8 table and let every two guests be friends of each other precisely if they are in the same row or column. It is
easy to see that the conditions from the statement are then satisfied.

Problem 58. A point P is located in the interior of triangle ABC. If

AP =
√

3, BP = 5, CP = 2, AB : AC = 2 : 1, and ∠BAC = 60◦,

what is the area of triangle ABC?

Result. 6+7
√
3

2
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Solution. Take a point Q on the opposite side from the point C with respect to line AB such that 4ABQ ∼ 4ACP .
The similarity ratio equals AB : AC = 2 and it follows that AQ = 2AP = 2

√
3 and BQ = 2CP = 4. Note that these

equalities together with ∠QAB = ∠PAC imply 4APQ ∼ 4ACB and hence ∠APQ = 90◦ and

PQ =

√
(2
√

3)2 − (
√

3)2 = 3

due to the Pythagorean theorem (we will refer to it as the Theorem in the rest of this solution). Since BP 2 = 52 =
42 + 32 = BQ2 + PQ2, the reverse implication of the Theorem yields ∠BQP = 90◦. Considering the reflection Q′ of
Q with respect to the midpoint of BP then allows us to use the Theorem again in right triangle AQ′B to compute
AB2 = PQ2 + (AP +BQ)2 = 28 + 8

√
3, and conclude that the area of 4ABC equals

1

2
·AB ·AC · sin 60◦ =

√
3

8
AB2 =

6 + 7
√

3

2
.

A

B C

P

Q

Q′

Problem 59. Let P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 be a polynomial with non-negative integer coefficients
such that

P

(√
21− 1

2

)
= 2020.

Find the minimal possible value of an + an−1 + · · ·+ a1 + a0.

Result. 22

Solution. Let u =
√
21−1
2 and note that we are minimizing an + an−1 + · · ·+ a1 + a0 = P (1). We split the solution

into several steps.
Step 1: Check that u is a root of G(x) = x2 + x− 5 and divide P (x) by G(x), i.e. write

P (x) = Q(x)G(x) +Ax+B

for some integers A, B and a polynomial Q with integer coefficients (since the leading coefficient of G(x) is 1, standard
algorithm of polynomial long division yields the result).

Step 2: Since P (u)− 2020 = 0, A, B are integers and u is irrational, we conclude that A = 0 and B− 2020 = 0, i.e.

P (x) = Q(x)G(x) + 2020. (?)

Step 3: If any of the coefficients of P (x), say ak, satisfies ak ≥ 5, then the polynomial P̃ (x) = P (x) +G(x)xk =
P (x) + (x2 + x− 5)xk also satisfies all the conditions and P̃ (1) = P (1)− 3. Repeating this procedure as many times as
possible we end up with a polynomial P (x) with all coefficients satisfying ak ∈ {0, 1, 2, 3, 4} and P (u) = 2020.

Step 4: Observe that the polynomial P satisfying these properties is unique. Indeed, any such polynomial fulfills
the equation (?) with an appropriate polynomial Q(x), in order to have 0 ≤ a0 ≤ 4, where a0 is the constant coefficient
of P (x), we infer that the constant coefficient of Q(x) must satisfy q0 = 404. Due to the fact that we know all
coefficients of G(x) and the constant one has absolute value 5, we can proceed to determine the linear coefficient q1
from equation (?) etc. Uniqueness of Q(x) clearly implies the desired uniqueness of P (x).

Step 5: Now it only remains to provide the computations arising from repeating the procedure described in Step 3.
We start with constant polynomial P0(x) = 2020 and proceed as follows:
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P1(x) = 404x2 + 404x

P2(x) = 80x3 + 484x2 + 4x

P3(x) = 96x4 + 176x3 + 4x2 + 4x

P4(x) = 35x5 + 131x4 + x3 + 4x2 + 4x

P5(x) = 26x6 + 61x5 + x4 + x3 + 4x2 + 4x

P6(x) = 12x7 + 38x6 + x5 + x4 + x3 + 4x2 + 4x

P7(x) = 7x8 + 19x7 + 3x6 + x5 + x4 + x3 + 4x2 + 4x

P8(x) = 3x9 + 10x8 + 4x7 + 3x6 + x5 + x4 + x3 + 4x2 + 4x

P9(x) = 2x10 + 5x9 + 4x7 + 3x6 + x5 + x4 + x3 + 4x2 + 4x

P10(x) = x11 + 3x10 + 4x7 + 3x6 + x5 + x4 + x3 + 4x2 + 4x.

The sought minimum is thus P10(1) = 1 + 3 + 4 + 3 + 1 + 1 + 1 + 4 + 4 = 22.
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